HEEN ’
0 EasvBuip EESST

EasyBuild + EESSI UK workshop

27-28 April 2023, London (UK)

https://easybuild.io/eb-eessi-uk-workshop-2023-04

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



https://easybuild.io/eb-eessi-uk-workshop-2023-04
https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop

[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A



Practical information B0 EasvBuin
LT T T

e Tutorial website: https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop

e If you need help, consider asking questions in the EasyBuild Slack

e Prepared environment for hands-on demos & exercises


https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop
https://easybuild.io/join-slack

Prepared environment B0 EnsvBuno
[T TT]

e Small Rocky 8 cluster (in the cloud)

e You need to create an account!
o  Signup: https://mokey.eum?23.learnhpc.eu/auth/signup
o Accounts will only be approved for access on 26-27-28 April 2023,
so please record your username/password !
m “Reset password” link does not work, instead raise any login problem in Slack

e Accessvia ssh or web browser (pick one and stick to it!)
o Shell access: ssh eum23.learnhpc.eu
m Uselogin node, or start interactive shell on workernode: srun --time 600 -c 1
--pty /bin/bash -1
o Via browser: https://eum?23.learnhpc.eu

e System will be up until the end of the tutorial (~18:00 BST on Fri 28 April 2023)

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-practical-info 4
S



https://mokey.eum23.learnhpc.eu/auth/signup
https://eum23.learnhpc.eu/
https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-practical-info

[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A



What iS EaSYBUild? | EasyBuio

!

e EasyBuild is a software build and installation framework
e Strong focus on scientific software, performance, and HPC systems

e Open source (GPLv2), implemented in Python (2.7, 3.5+)
https://easybuild.io

e Brief history: https://docs.easybuild.io
o Created in-house at HPC-UGent in 2008 https://github.com/easybuilders
o First released publicly in Apr'12 (version 0.5) https://easybuild.io/join-slack
o EasyBuild 1.0.0 released in Nov'12 (during SC12) Twitter: @easy_build

o  Worldwide community has grown around it since then!


https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack
https://twitter.com/easy_build

EasyBuild in a nutshell 0 EnsvBuio

!

e Tool to provide a consistent and well performing scientific software stack
e Uniform interface for installing scientific software on HPC systems

e Saves time by automating tedious, boring and repetitive tasks

e Can empower scientific researchers to self-manage their software stack

e A platform for collaboration among HPC sites worldwide

e Has become an “expert system” for installing scientific software



Key features of EasyBuild (1/2) 0 EasvBu

!

Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, ...

No admin privileges are required (only write permission to installation prefix)
Highly configurable, easy to extend, support for hooks, easy customisation
Detailed logging, fully transparent via support for “dry runs” and trace mode

Support for using custom module naming schemes (incl. hierarchical)



Key features of EasyBuild (2/2) 0 EasvBu

!

e Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, ...)

e Actively developed and supported by worldwide community

e Frequent stable releases since 2012 (every 6 - 8 weeks)

e Comprehensive testing: unit tests, testing contributions, regression testing

e Various support channels (mailing list, Slack, conf calls) + yearly user meetings



Focus points in EasyBuild 0 EasvBu

!

Performance
e Strong preference for building software from source

e Software is optimized for the processor architecture of build host (by default)

Reproducibility
e Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

e Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort
e Development is highly driven by EasyBuild community

e Lots of active contributors, integration with GitHub to facilitate contributions

10



What EaSYBUiI.d iS n_Ot | EasyBuio
[T TT]

e EasyBuild is not YABT (Yet Another Build Tool)
o It does not try to replace CMake, make, pip, etc.

o Itwraps around those tools and automates installation procedures

e EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, ...)

o You should still install some software via OS package manager: OpenSSL, Slurm, etc.

e EasyBuild is not a magic solution to all your (software installation) problems

o You may still run into compiler errors (unless somebody worked around it already)

11



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

12
s



EasyBuild terminology B0 EnsvBuo
[T T]
e Itisimportant to briefly explain some terminology often used in EasyBuild

Some concepts are specific to EasyBuild: easyblocks, easyconfigs, ...

Overloaded terms are clarified; modules, extensions, toolchains, ...

13



EasyBuild terminology: framework B0 EnsvBuo

!

e The EasyBuild framework is the core of EasyBuild

e Collection of Python modules, organised in packages

e Implements common functionality for building and installing software

e Support for applying patches, running commands, generating module files, ...
e Examples: easybuild.toolchains easybuild.tools, ...

e Provides eb command, but can also be leveraged as a Python library

e GitHub repository: https://github.com/easybuilders/easybuild-framework

14


https://github.com/easybuilders/easybuild-framework

EasyBuild terminology: easyblock B0 EnsvBuo

A Python module that implements a specific software installation procedure

o Can be viewed as a “plugin” to the EasyBuild framework

e Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages, etc.
e Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WREF, ...)

e Installation procedure can be controlled via easyconfig parameters

o Additional configure options, commands to run before/after build or install command, ...

o Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of software

e GitHub repository: https://github.com/easybuilders/easybuild-easyblocks

e Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks)

15


https://github.com/easybuilders/easybuild-easyblocks

EasyBuild terminology: easyconfig file B0 EnsvBuo

e Text file that specifies what EasyBuild should install (in Python syntax)
e Collection of values for easyconfig parameters (key-value definitions)
e Filename typically ends in‘.eb’
e Specific filename is expected in some contexts (when resolving dependencies)
o Should match with values for name, version, toolchain, versionsuffix

O <name>-<version>—-<toolchain><versionsuffix>.eb

e GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

16


https://github.com/easybuilders/easybuild-easyconfigs

EasyBuild terminology: easystack file 0 EasvBu

e New concept since EasyBuild v4.3.2 (Dec’20), experimental feature

e Concise description for software stack to be installed (in YAML syntax)
e Basically specifies a set of easyconfig files (+ associated info)

e Still a work-in-progress, only basic functionality implemented currently

e More info: https://docs.easybuild.io/en/latest/Easystack-files.html

17


https://docs.easybuild.io/en/latest/Easystack-files.html

EasyBuild terminology: extensions

e Common examples: Python packages, Perl modules, R libraries, ...

Can be installed in different ways:
o As a stand-alone software packages (separate module)
o In a bundle together with other extensions

o As an actual extension, to provide a “batteries included” installation

. EasvBumnp

!

Additional software that can be installed on top of other software

Extensions is the general term we use for this type of software packages

18



EasyBuild terminology: dependencies 0 EasvBu

!

e Software that is required to build/install or run other software

e Build dependencies: only required when building/installing software (not to use it)
o Examples: CMake, pip, pkg-config, ...

e Run-time dependencies: (also) required to use the installed software
o Examples: Python, Perl, R, ...

e Link-time dependencies: libraries that are required by software to link to
o Examples: glibc, OpenBLAS, FFTW, ...

e Currently in EasyBuild: no distinction between link-time and run-time dependencies

19



EasyBuild terminology: toolchains B0 EnsvBuo

!

Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, ...
Toolchain component: a part of a toolchain (compiler component, etc.)

Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT
Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.

System toolchain: use compilers (+ libraries) provided by the operating system

Common toolchains: widely used toolchains in EasyBuild community:
o foss: GCC+ OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW

o intel:Intel compilers + Intel MPI + Intel MKL

20



EasyBuild terminology: modules

. EasvBumnp

!

e Veryoverloaded term: kernel modules, Python modules, Perl modules ...

e In EasyBuild context: “module” usually refers to an environment module file

o Shell-agnostic specification of how to “activate” a software installation

o Expressed in Tcl or Lua syntax (scripting languages)

o Consumed by a modules tool (Lmod, Environment Modules, ...)

e Other types of modules will be qualified explicitly (Python modules, etc.)

e FEasyBuild automatically generates a module file for each installation

21


https://lmod.readthedocs.io
https://modules.readthedocs.io

Bringing all EasyBuild terminology together 0 EnsvBuio

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

22



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info
[10:05-10:15] What is EasyBuild?
[10:15-10:30] EasyBuild Terminology
[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
e [11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)
114:00-15:00] Troubleshooting (hands-on)
[13:00-14:00] Writing Easyconfigs (hands-on)
[15:00-15:30] (coffee break)
[15:30-16:30] Module Naming Schemes (hands-on)
[

16:30-17:00] Q&A
23
s



Installing EasyBuild: requirements

e Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, ...)

o EasyBuild also works on macOS, but support is very basic

e Python 2.7 or 3.5+

o  Only Python standard library is required for core functionality of EasyBuild

o Using Python 3.6+ is highly recommended!

e An environment modules tool (module command)

o Defaultis Lua-based Lmod implementation, highly recommended!

o Tcl-based implementations are also supported

" EnsyBuip

!

24



Installing EasyBuild: different options 00 EasvBuio
[T T T]

e Installing EasyBuild using a standard Python installation tool
O pip install easybuild
o ..oravariantthereof (pip3 install --user,using virtualenv, etc.)

o May require additional commands, for example to update environment

e Installing EasyBuild as a module, with EasyBuild (recommended!)

o 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

e Development setup
o Clone GitHub repositories:
easybuilders/easybuild-{framework, easyblocks,easyconfigs}

o Update SPATH and $PYTHONPATH environment variables

25



Installing EasyBuild as a module (recommended) 5 EasvBuno

3-step bootstrap procedure

e Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/SUSER/easybuild

pip3 install --prefix $TMPDIR easybuild

# update environment to use this temporary EasyBuild installation
export PATH=S$STMPDIR/bin:S$PATH

export PYTHONPATH=$TMPDIR/lib/python3.9/site-packages:SPYTHONPATH
# instruct EasyBuild to use python3 command

export EB PYTHON=python3

26



Installing EasyBuild as a module (recommended) 5 EasvBuno

3-step bootstrap procedure

e Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix SHOME/easybuild
# and then clean up the temporary EasyBuild installation

rm -r STMPDIR

e Step 3: Load EasyBuild module to use final installation

module use SHOME/easybuild/modules/all

module load EasyBuild

27



Verifying the EasyBuild installation 00 EasvBuio

e Check EasyBuild version:

eb --version

e Show help output (incl. long list of supported configuration settings)

eb —--help

e Show the current (default) EasyBuild configuration:

eb --show-config

e Show system information:

eb --show-system—-info

28



Updating EaSYBUiI.d | EasyBuio

!

e Updating EasyBuild (in-place) that was installed with pip:
pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)
e Use current EasyBuild to install latest EasyBuild release as a module:
eb —--install-latest-eb-release

o This is not an in-place update, but a new EasyBuild installation!

o You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.5.4

29



Configuring EasyBuild 0 EasvBu
[T T T]
e EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool
e .. butitwill (ab)use SHOME/.local/easybuild to install software into, etc.
e Itis strongly recommended to configure EasyBuild properly!
e Main questions you should ask yourself:

o  Where should EasyBuild install software (incl. module files)?
o  Where should auto-downloaded sources be stored?

o Which filesystem is best suited for software build directories (I/0-intensive)?

30



Primary configuration settings 0 EnsvBuio

[TTT]

e Most important configuration settings: (strongly recommended to specify the ones in bold!)

(@)

(@)

@)

(@)

@)

(@)

(@)

Modules tool + syntax (modules-tool + module-syntax)
Software + modules installation path (installpath)”
Location of software sources “cache” (sourcepath)

Parent directory for software build directories (buildpath)”
Location of easyconfig files archive (repositorypath)’

Search path for easyconfig files (robot-paths + robot)

Module naming scheme (module-naming-scheme )

e Several locations” (+ others) can be controlled at once via prefix configuration setting

e full list of EasyBuild configuration settings (~270) is available via eb --help

31



Configuration levels W00 EasvBuno

!

e There are 3 different configuration levels in EasyBuild:
o Configuration files
o Environment variables
o Command line options to the eb command

e FEach configuration setting can be specified via each “level” (no exceptions!)

e Hierarchical configuration:
o Configuration files override default settings
o Environment variables override configuration files

o eb command line options override environment variables

32



EasyBuild configuration files 0 EasvBu

!

EasyBuild configuration files are in standard INI format (key=value)

EasyBuild considers multiple locations for configuration files:

o User-level: SHOME/ .config/easybuild/config.cfg (Orvia $XDG CONFIG HOME)
o System-level: /etc/easybuild.d/*.cfg (Orvia $XDG CONFIG DIRS)

o Seeoutputofeb --show-default-configfiles

Output produced by eb --confighelpis a good starting point
Typically for “do once and forget” static configuration (like modules tool to use, ...)

EasyBuild configuration files and easyconfig files are very different things!

33



$EASYBUILD _* environment variables o EasvBuno

[T 1]

e Very convenient way to configure EasyBuild

e Thereis an $EASYBUILD * environment variable for each configuration setting

O

O

O

O

Use all capital letters
Replace every dash (-) character with an underscore ()
Prefix with EASYBUILD

Example: module-syntax — $EASYBUILD MODULE SYNTAX

e Common approach: using a shell script or module file to (dynamically) configure EasyBuild

34



Command line options for eb command 00 EasvBuio

e Configuration settings specified as command line option always “win"”

e Use double-dash + name of configuration setting, like ——module-syntax

e Some options have a corresponding shorthand (eb --robot==eb -r)

e In some cases, only command line option really makes sense (like eb --version)

e Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

35



Inspecting the current configuration B0 EnsvBuo

!

e |t can be difficult to remember how EasyBuild was configured

e Output produced by eb --show-config is useful to remind you
e Shows configuration settings that are different from default

e Always shows a couple of key configuration settings

e Also shows on which level each configuration setting was specified

e Full current configuration: eb --show-full-config

36



Inspecting the current configuration: example T EasvBuno
[T 1]

$ cat $SHOME/.config/easybuild/config.cfg
[config]
prefix=/apps

$ export EASYBUILD BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
# Current EasyBuild configuration
# (C: command line argument, D: default value,

# E: environment variable, F: configuration file)

buildpath (E) = /tmp/example/build

containerpath (F) = /apps/containers

installpath (C) = /tmp/example

packagepath (F) = /apps/packages

prefix (F) = /apps

repositorypath (F) = /apps/ebfiles repo

robot-paths (D) = /home/example/.local/easybuild/easyconfigs
sourcepath (F) = /apps/sources

37



Minimal EasyBuild configuration for hands-on i EasvBuio
[TTT]

e Use home directory as main prefix directory
(location for installed software, downloaded sources, ...)

export EASYBUILD PREFIX=SHOME/easybuild

e Use local temporary directory for build directories (important!)

export EASYBUILD BUILDPATH=/tmp/SUSER

e Ensure prepared software stack is visible via “module avail”

module use /easybuild/modules/all

38



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

39
s



Basic usage of EasyBuild 0 EasvBu

!

Use eb command to run EasyBuild

Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

--robot (-r) option is required to also install missing dependencies (and toolchain)

Typical workflow:

O

Find or create easyconfig files to install desired software
Inspect easyconfigs, check missing dependencies + planned installation procedure
Double check current EasyBuild configuration

Instruct EasyBuild to install software (while you enjoy a coffee... or two)

40



Specifying easyconfigs to use 00 EnsyBun

!

e There a different ways to specify to the eb command which easyconfigs to use

o  Specific relative/absolute paths to (directory with) easyconfig files
o Names of easyconfig files (triggers EasyBuild to search for them)

o Easystack file to specify a whole stack of software to install (via eb --easystack)

e Easyconfig filenames only matter when missing dependencies need to be installed

o “Robot” mechanism searches based on dependency specs + easyconfig filename

e cb --search can be used to quickly search through available easyconfig files

41



Inspecting easyconfigs via eb --show-ec 0 EasvBuno
[T T T]

e To see the contents of an easyconfig file, you can use eb --show-ec

e No need to know where it is located, EasyBuild will do that for you!

S eb --show-ec TensorFlow-2.6.0-foss-2021la.eb

easyblock = 'PythonBundle'

name = 'TensorFlow'

version = '2.6.0"

homepage = 'https://www.tensorflow.org/"

description = "An open-source software library for Machine Intelligence"
toolchain = {'name': 'foss', 'version': '2021la'}

toolchainopts = {'pic': True}

42



Checking dependencies via eb --dry-run B0 EasvBuno
[T T]

To check which dependencies are required, you can use eb --dry-run(or eb -D):
e Provides overview of all dependencies (both installed and missing)

e Including compiler toolchain and build dependencies

$ eb SAMtools-1.14-GCC-11.2.0.eb -D

* [x] SCFGS/n/ncurses/ncurses-6.2-GCCcore-11.2.0.eb (module: ncurses/6.2-GCCcore-11.2.0)
* [x] SCFGS/p/pkg-config/pkg-config-0.29.2.eb (module: pkg-config/0.29.2)

* [x] SCFGS/0/0OpenSSL/OpenSSL-1.1.eb (module: OpenSSL/1.1)

* [x] SCFGS/c/cURL/cURL-7.78.0-GCCcore-11.2.0.eb (module: cURL/7.78.0-GCCcore-11.2.0)

* [ ] $CFGS/s/SAMtools/SAMtools-1.14-GCC-11.2.0.eb (module: SAMtools/1.14-GCC-11.2.0)

43



Checking missing dependencies via eb --missing 00 EnsyBui

[T 1]

To check which dependencies are still missing, use eb --missing (0oreb -M):

e Takes into account available modules, only shows what is still missing

$ eb PyTables-3.6.1-foss-2021b.eb -M

3 out of 69 required modules missing:

* 1.LZ0/2.10-GCCcore-11.2.0 (LZO-2.10-GCCcore-11.2.0.eb)

* Blosc/1.21.1-GCCcore-11.2.0 (Blosc-1.21.1-GCCcore-11.2.0.eb)

* PyTables/3.6.1-foss-2021b (PyTables-3.6.1-foss-2021b.eb)

44



Inspecting software install procedures 00 EnsyBun

!

EasyBuild can quickly unveil how exactly it would install an easyconfig file

Via eb --extended-dry-run (Or eb -x)

Produces detailed output in a matter of seconds

Software is not actually installed, all shell commands and file operations are skipped!
Some guesses and assumptions are made, so it may not be 100% accurate...

Any errors produced by the easyblock are reported as being ignored

Very useful to evaluate changes to an easyconfig file or easyblock!

45



o o [TTT]
Inspecting software install procedures: example IS EasvBuno

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

preparing... [DRY RUN]

[prepare step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load GCC/11.2.0

Loading modules for dependencies...
module load bzip2/1.0.8-GCCcore-11.2.0

module load zlib/1.2.11-GCCcore-11.2.0
module load XZ/5.2.5-GCCcore-11.2.0

46



Inspecting software install procedures: example [ EasvBuno

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

Defining build environment...

export CXX='g++'

export CXXFLAGS='-02 -ftree-vectorize -march=native -fno-math-errno -fPIC'

configuring... [DRY RUN]

[configure step method]
running command "./bootstrap.sh --with-toolset=gcc
-—-prefix=/tmp/example/Boost/1.77.0-GCC-11.2.0 --without-libraries=python,mpi"
(in /tmp/example/build/Boost/1.77.0/GCC-11.2.0/Boost-1.77.0)

47



Inspecting software install procedures: example

$ eb Boost-1.77.0-GCC-11.2.0.eb -x

[sanity check step method]
Sanity check paths - file ['files']
* lib/libboost system-mt-x64.so
* lib/libboost system.so
* lib/libboost thread-mt-x64.so
Sanity check paths - (non-empty) directory ['dirs']
* include/boost
Sanity check commands

(none)

[T 1T
W EasyBui
[T TT1]

48



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

49
s



Installing software with EasyBuild B0 EnsvBuo
[TTT]

e To install software with EasyBuild, just run the eb command:

0o eb SAMtools-1.14-GCC-11.2.0.eb

If any dependencies are still missing, you will need to also use —--robot:
O eb BCFtools-1.14-GCC-11.2.0.eb —--robot

e To see more details while the installation is running, enable trace mode:

0 eb BCFtools-1.14-GCC-11.2.0.eb —--robot --trace

e To reinstall software, use eb --rebuild (or eb --force)

50



Step-wise installation procedure

i I: parse easyconfig

i II: fetch sources

i Ill: check readiness

V: unpack sources

i V: apply patches
L’ VI: prepare

XVII: test cases

XVI: packaging ,j

XV:

permissions ,3

XIV: env. module

3

3

XIlI: cleanup

XlI: sanity check

b

XI: extensions :\

&

VII: configure
VIII: build X: install J
L—-» IX: test _)

[T T T]
. EasvBumnp

[TTT]

e EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

e Easyblock completes the implementation, override or extends installation steps where needed

51




Using software installed with EasyBuild B0 EnsvBuo
[TTT]

To use the software you installed with EasyBuild, load the corresponding module:

# inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

# check for available modules for BCFtools

module avail BCFtools

# load BCFtools module to “activate” the installation

module load BCFtools/1.14-GCC-11.2.0

52



Stacking software installations 00 EasvBuio

[TTT]

It's easy to “stack” software installed in different locations
EasyBuild doesn't care much where software is installed
As long as the required modules are available to load, it can pick them up

End users can easily manage a software stack on top of what's installed centrally!
module use /easybuild/modules/all

eb --installpath SHOME/easybuild my-software.eb

53



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

[14:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

54
s



Troubleshooting failing installations 0 EasvBu

!

e Sometimes stuff still goes wrong...
e Being able to troubleshoot a failing installation is a useful/necessary skill

e Problems that occur include (but are not limited to):
o Missing source files
o Missing dependencies (perhaps overlooked required dependencies)
o Failing shell commands (non-zero exit status)
o Running out of memory or storage space

o Compiler errors (or crashes)

e FEasyBuild keeps a thorough log for each installation which is very helpful

55



Troubleshooting: error messages [ EasvBuno

[T 1]

When EasyBuild detects that something went wrong, it produces an error
Very often due to a shell command that produced a non-zero exit code...

Sometimes the problem is clear directly from the error message:

== building...

== FAILED: Installation ended unsuccessfully (build directory:
/tmp/example/example/1.0/GCC-11.2.0) :

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:
/usr/bin/g++ -02 -ftree-vectorize -march=native -std=c++14 -c -0 core.o core.cpp

g+t+: error: unrecognized command line option '-std=c++14' (took 1 sec)
In some cases, the error message itself does not reveal the problem...

56



Troubleshooting: log files B0 EnsvBuo

[TTT]

EasyBuild keeps track of the installation in a detailed log file

During the installation, it is stored in a temporary directory:

S eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

Includes executed shell commands and output, build environment, etc.
More detailed log file when debug mode is enabled (debug configuration setting)
There is a log file per EasyBuild session, and one per performed installation

When an installation completes successfully,
the log file is copied to a subdirectory of the software installation directory

57



Troubleshooting: navigating log files 0 EasvBu

e EasyBuild log files are well structured, and fairly easy to search through

e Example log message, showing prefix (“== "), timestamp, source location, log level:
== 2022-05-25 13:11:19,968 run.py:222 INFO running cmd: make -3 9

e Different steps of installation procedure are clearly marked:
== 2022-05-25 13:11:48,817 example INFO Starting sanity check step

e To find actual problem for a failing shell command, look for patterns like:

o ERROR
o Error 1
o error:

o  failure

o not found
o No such file or directory
o Segmentation fault

58



Troubleshooting: inspecting the build directory B0 EasvBuno

e EasyBuild leaves the build directory in place when the installation failed

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/build/example/1.0/GCC-11.2.0): build failed ...

e (Can be useful to inspect the contents of the build directory for debugging

e For example:
o Check config.log when configure command failed

o Check cMakeFiles/CMakeError.log when cmake command failed (good luck...)

59



Troubleshooting: hands-on exercise 00 EnsyBun
[TTT]
e Highly recommended to try the exercise on tutorial website!

Try to fix the problems you encounter with the “broken” easyconfig file...

S eb subread.eb

== FAILED: Installation ended unsuccessfully (build directory:
/tmp/example/Subread/2.0.3/GCC-8.5.0): build failed (first 300 chars):
Couldn't find file subread-2.0.3-source.tar.gz anywhere, and downloading
it didn't work either...

Paths attempted (in order):

60



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)
[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

61
s



Adding support for additional software B0 EnsvBuno
[TTT]

e Everyinstallation performed by EasyBuild requires an easyconfig file

e Easyconfig files can be:
o Included with EasyBuild itself (or obtained elsewhere)
o Derived from an existing easyconfig (manually or automatic)

o Created from scratch

Most easyconfigs leverage a generic easyblock

Sometimes using a custom software-specific easyblock makes sense...

62



Easyblocks vs easyconfigs 0 EnsvBuio

[TTT]

e When can you get away with using an easyconfig leveraging a generic easyblock?

e When is a software-specific easyblock really required?

e FEasyblocks are “implement once and forget”

e FEasyconfig files leveraging a generic easyblock can become too involved (subjective)

e Reasons to consider implementing a custom easyblock:

©)

O

'critical’ values for easyconfig parameters required to make installation succeed
custom (configure) options related to toolchain or included dependencies
interactive commands that need to be run

having to create or adjust specific (configuration) files

'hackish' usage of a generic easyblock

complex or very non-standard installation procedure

63



Writing easyconfig files 00 EnsyBun

e C(ollection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

e Some easyconfig parameters are mandatory, and must always be defined:

name, version, homepage, description, toolchain

e Commonly used easyconfig parameters (but strictly speaking not required):

0 easyblock(by default derived from software name)

0 versionsuffix

O source urls sources, patches, checksums

0 dependencies builddependencies

0 preconfigopts configopts prebuildopts buildopts preinstallopts installopts

0 sanity check pathssanity check commands

64



Generating tweaked easyconfig files 0 EasvBu

!

e Trivial changes to existing easyconfig files can be done automatically

e Bumping software version: eb example-1.0.eb --try-software-version 1.1
e Changing toolchain (version): eb example.eb --try-toolchain GCC,11.2.0

e Changing specific easyconfig parameters (limited): eb --try-amend ...

e Note the “try” aspect: additional changes may be required to make installation work

e EasyBuild does save the so generated easyconfig files in the easybuild subdirectory

of the software installation directory and in the easyconfig archive.

65



Copying easyconfig files 00 EnsyBun

e Small but useful feature: copy specified easyconfig file via eb --copy-ec
e Avoids the need to locate the file first via eb --search
e Typically used to create a new easyconfig using existing one as starting point

e Example:
$ eb —--copy-ec SAMtools-1.14-GCC-11.2.0.eb SAMtools.eb

SAMtools-1.14-GCC-11.2.0.eb copied to SAMtools.eb

66



Hands-on: creating easyconfig files 0 EasvBu
[TTT]

e Step-wise example + exercise of creating an easyconfig file from scratch
e For fictitious software packages: eb-tutorial + py-eb-tutorial

e Great exercise to work through these yourself!

name = 'eb-tutorial'

version = "'"1.0.1"

homepage = 'https://easybuilders.github.io/easybuild-tutorial’
description = "EasyBuild tutorial example"

67



[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)

e [11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

68




[T T 1]
Agenda - day 1 (all times are BST) | EnasyBuipo

[TTT]

[10:00-10:05] Welcome + Practical Info

[10:05-10:15] What is EasyBuild?

[10:15-10:30] EasyBuild Terminology

[10:30-11:00] Installation and configuration of EasyBuild (hands-on)
[11:00-11:30] Basic Usage of EasyBuild (hands-on)
[11:30-12:00] Installing Software with EasyBuild (hands-on)
[12:00-13:00] (lunch break)

114:00-15:00] Troubleshooting (hands-on)

[13:00-14:00] Writing Easyconfigs (hands-on)

[15:00-15:30] (coffee break)

[15:30-16:30] Module Naming Schemes (hands-on)
[16:30-17:00] Q&A

69
s



Flat vs hierarchical module naming schemes i EasyBu
T

e Handful of supported module naming schemes (MNS), easysuildmns is the default

e Flat module naming scheme (like easyBuiidmns)

o Clear mapping of easyconfig filename to name of generated module file

o All modules immediately available for loading

e Hierarchical scheme typically has 3 levels -~

o core level for things like compilers e
. compiler
o compiler level @

o MPllevel 0 e e e e e

MPI
ScalAPACK/2.1.0

70

o Use “gateway modules” to access

different levels




Pros and cons of using a flat vs hierarchical MNS B0 EasvBuno
[T 111

e Flat MNS

+

all modules visible (can be overwhelming)
guaranteed unique

long module names that can be confusing

potential compatibility issues unless you are careful

e Hierarchical MNS

+

short/clean module names (and no visible toolchains)

less visible modules (need to use module spider+module avail)
automatic swapping with Lmod when changing compiler/mpi
modules that can be loaded are compatible with each other
requires gateway modules which might have little meaning for users

71



Custom module naming schemes with EasyBuild = ExnBunn

e You can also create your own module naming scheme (e.g., lower-case only)

o Implement Python class that derives from the general ModuleNamingScheme class
o Best to start from one of the existing schemes

o There are (a lot) more things to tweak with hierarchical module naming schemes

e To configure EasyBuild to use your custom module naming scheme:

export EASYBUILD INCLUDE MODULE NAMING SCHEMES=SHOME/easybuild/example mns.py
export EASYBUILD MODULE NAMING SCHEME=ExampleMNS

e Use dry-run mode to test it, e.g.,

eb SciPy-bundle-2021.10-foss-2021b.eb -D

72


https://docs.easybuild.io/en/latest/api/easybuild.tools.module_naming_scheme.mns.html#easybuild.tools.module_naming_scheme.mns.ModuleNamingScheme

Hands-on example: installing HDF5 in an HMNS = ErevBuus
[TTT]

e We must avoid mixing modules from a flat and hierarchical MNS!
module unuse $MODULEPATH

e Configure our setup to reuse the existing software installations
export EASYBUILD INSTALLPATH SOFTWARE=/easybuild/software

export EASYBUILD MODULE NAMING SCHEME=HierarchicalMNS

export EASYBUILD INSTALLPATH MODULES=SHOME/hmns/modules

e Re-generate all modules for HDF5 using the new scheme (42 modules)
eb HDF5-1.12.1-gompi-2021b.eb —--robot --module-only

e Explore the new hierarchy
module use SHOME/hmns/modules/all/Core

73



[T T 1]
Agenda - day 2 (all times are BST) | EnasyBuipo

[TTT]

e [10:00-12:00] EasyBuild: advanced topics (incl. demos)
o  Contributing to EasyBuild
o  Customizing EasyBuild Using Hooks
o Implementing Easyblocks
o Submitting Installations as Slurm Jobs
o  Using EasyBuild as a Python Library
e [12:00-13:00] (lunch break)
e [13:00-17:00] Introduction to EESSI (incl. 30min coffee break + Q&A)
o  What is EESSI?
o  High-level design of EESSI
o  Current status of the project
o  Getting access to EESSI (hands-on)
o Using EESSI (hands-on)
o  Use Cases for EESSI (hands-on)
o The EESSI Community

74



The EasyBuild community

seocgbifh (i Viaanderen 9 JULICH \Hpc Now!)

rrrrrrrrrrrr

» = .
G 7 EasyBuip 7#

7[ compute

%/ W —— “‘ canada
FRED HUTCH BioCenter

A4

e LUMI uio: BEAR

e Documentation is read all over the world = SNIC NUS ‘Wi

0 e HPC sites, consortia, and companies ; S
GitHub e Slack: >700 members, ~180 active members () puEs Wil [SOCC
per week, 311k messages IR IS0 S5 Universty B8 Microsoft

52 slack

e Regular online conf calls... and we even meet in person sometimes!

75



https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community

Why c0ntribUte BaCk? " EasyBuio

!

Creating PRs upstream: get reviews, suggestions from software installation experts
Participating in the EasyBuild community: connect with HPC teams from all over the world
Keeping in sync with the EasyBuild repository to maximally profit from upstream work:

o New software recipes, new version of existing software

o Bug fixes

o Enhancements, additional functionality

o Performance improvements

76


https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

Contributing to EasyBuild 0 EasvBu

!

There are several ways to contribute to EasyBuild, including:

e Providing feedback (positive or negative)

e Reporting bugs

Joining the discussions (mailing list, Slack, conf calls)

Sharing suggestions/ideas for enhancements & additional features

Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

Extending & enhancing documentation

77



DON'T KNOW GIT?
GitHub integration features V.

EasyBuiLp

!

YOU SHALLNOT PASS!!!

e EasyBuild has strong integration with GitHub, which facilitates contributions

e Some additional Python packages required for this: GitPython, keyring

e Also requires some additional configuration, incl. providing a GitHub token

e Enables creating, updating, reviewing pull requests using eb command!

e Makes testing contributions very easy (~2,500 easyconfig pull requests per year!)

e Extensively documented:

https://docs.easybuild.io/integration-with-github

78


https://docs.easybuild.io/integration-with-github

Opening a pull request in 1,X X

mv sklearn.eb scikit-lea -Python-3.6.3.eb

mv scikit-learn*.eb easyb ikit-learn
git checkout develop && g develop
git checkout -b scikit lea ~2017b
git add easybuild/easyc it-learn

ikit-learn v0.19.1"

2017b

git commit -m "{data

vr v »r U O U N

git push origin sc

+ log into GitHub to ac est (clickety, clickety...)

one single eb command metadata is automatically

no git commands derived from easyconfig

no GitHub interaction saves a lot of time!

eb --new-pr sklearn.eb

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-contributing

W EasvyBunp
HEEN

79




EasyBuild Contributions & Contributors B0 EnsvBuno
[TTT]

400
Emboegel BMHPC-UGent mmaintainers @other 350
— framework
2500 E 300 — easyblocks
- -é 250 — easyconfigs
] €
8
g 200
2} g
E £ 150
5 =
] 2
e
=]
Q
o
Q
c
[
Q
o]
=

o

2000
100
1500
50
0
1000 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
measyconfigs measyblocks  mf "
50 130
120
110
100
0 - %

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 &

70
60
50
40
30
20
10

0
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

(only central easyconfigs repository)

# unique contributors per year

80
s



Customizing EasyBuild via Hooks 0 EasvBu

[TTT]

Hooks allow you to customize EasyBuild easily and consistently

Set of Python functions that are automatically picked up by EasyBuild
Can be used to "hook” custom code into specific installation steps
Make EasyBuild use your hooks via hooks configuration option

Examples:

o Inject or tweak configuration options
o Change toolchain definitions

o  Custom checks to ensure that site policies are taken into account

Extensively documented: https://docs.easybuild.io/en/latest/Hooks.html

81


https://docs.easybuild.io/en/latest/Hooks.html

Hooks: examples 0 EasvBunn
[T T]

e EUM22 talk by Alex: Building a heterogeneous MPI stack with EasyBuild

https://easybuild.io/eum?22/#eb-mpi

e contrib/hookssubdirectory in easybuild-framework GitHub repository:

https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

82


https://easybuild.io/eum22/#eb-mpi
https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

Hooks: examples 0 EasvBunn
[T T]

Ensure that software is installed with a specific license group:

def parse_hook(self, *args, **kwargs):
if self.name == 'Example":
# use correct license group on Hortense
if os.getenv('VSC_INSTITUTE_CLUSTER') == 'dodrio":

self['group'] = 'gli_hortense_example'

83



Implementing Easyblocks 0 EasvBu

!

An easyblock may be required for more complex software installations
This requires some Python skills, and familiarity with EasyBuild framework
A software-specific easyblock can derived from a generic easyblock

Focus is usually on configure/build/installs steps of installation procedure

See also https://docs.easybuild.io/implementing-easyblocks

84


https://docs.easybuild.io/implementing-easyblocks

Submitting Installations as Slurm Jobs 00 EasvBuio
[T T T]

e EasyBuild can distribute the installation of a software stack as jobs on a cluster
e Slurm is the most commonly used job backend that EasyBuild can use

® export EASYBUILD JOB BACKEND=Slurm

e Thenuse“eb .. --job --robot”

e See also https://docs.easybuild.io/submitting-jobs

85


https://docs.easybuild.io/submitting-jobs

Using EasyBuild as a Python Library 00 EasvBuio

[T T]
e You can use EasyBuild as a Python library: from easybuild import ..

e Setting up the EasyBuild configuration first is required:

from easybuilld.tools.options import set up configuration

set up configuration ()

e You can write your own Python scripts that leverage EasyBuild!

86



QUEStionS? " EnasyBuip
([T 1]

e Website: https://easybuild.io

e Documentation: https://docs.easybuild.io

e Tutorials: https://tutorial.easybuild.io

e Yearly EasyBuild User Meeting: https://easybuild.io/eum

e Getting help:

o Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

o Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

o  Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

87


https://easybuild.io
https://docs.easybuild.io
https://tutorial.easybuild.io
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls
https://easybuild.io/tutorial/isc21

Introduction to EESSI

EESSI

EasyBuiLp

[e0]
o0



EESSI in a nutshell

e European Environment for Scientific Software Installations (EESSI)

e Shared repository of (optimized!) scientific software installations

e Avoid duplicate work across (HPC) sites by collaborating on a shared software stack
e Uniform way of providing software to users, regardless of the system they use!

e Should work on any Linux OS (+ WSL, and possibly macOS) and system architecture
o From laptops and personal workstations to HPC clusters and cloud

o  Support for different CPUs, interconnects, GPUs, etc.

e Focus on performance, automation, testing, collaboration

E E s S I https://www.eessi-hpc.org
\/

ROPEAN EAVIRONMENT Eon https://eessi.qgithub.io/docs (try out the pilot setup!)

SCIENTIFIC SOFTWARE INSTALLATIONS 89



https://www.eessi-hpc.org
https://eessi.github.io/docs

Optimized scientific software installations

o Software should be optimized for the system it will run on

e Impact on performance is often significant for scientific software

Example: GROMACS 2020.1
(PRACE benchmark, Test Case B)

Metric: (simulated) ns/day,
higher is better

e Test system: dual-socket
Intel Xeon Gold 6420
(Cascade Lake, 2x18 cores)

¢ Performance of different
GROMACS binaries,
on exact same hardware/OS

performance (simulated ns/day)

2.0

1.5

1.0

0.5

0.0

1.57

1.09

& GROMACS built for...

1.57 1.60

1.85

1.84

90



Major goals of EESSI "

e Avoid duplicate work (for researchers, HPC support teams, ...) \ | /

o Tools that automate software installation process
| . EESSI
(EasyBuild, Spack) are not sufficient

o Go beyond sharing build recipes => work towards a shared software stack

e Providing a truly uniform software stack
o Use the (exact) same software environment everywhere
o  Without sacrificing performance for “mobility of compute”
(like with containers/conda)

e Facilitate HPC training, development of (scientific) software, ...

91



High-level overview of EESSI project

[T TT]
£ | EasvyBuio
Host OS Compatibility layer 2
gl Levelling the ground across client OSs 9 gBﬂtUﬂ
network
& GPU
drivers,
resource
manager
(Slurm),
CernVM-FS

Host operating system (Linux, macOS, WSL)

= XD ARM EAR © =

92



Filesystem layer

-
”
7’
7
/
/
/
/

HPC cluster X

—v . N
& Squid ~

reverse
Squid proxy
forward

Cloud A

-

CernVM-FS
Stratum 0

-
+

CernVM-FS
Stratum 1

https://qithub.com/EESSI/filesystem-layer

CernVM-FS

\E https://cvmfs.readthedocs.io

e Global distribution of software installations

(SUOOIYSBLIS/SIOYINE/UI0D UOINRI MMM//:SANY BIA SUOD))

e Centrally managed software stack
e Redundant network of “mirrors”
e Multiple levels of caching

e Same software stack everywhere:

laptops, HPC clusters, cloud VMs, ...

93



https://www.flaticon.com/authors/smashicons
https://cvmfs.readthedocs.io
https://github.com/EESSI/filesystem-layer

Compatibi[ity [ayer https://github.com/EESSI/compatibility-layer .
e Gentoo Prefix installation (in /cvmfs/.../compat/<os>/<arch>/) \ | y
e Set of tools & libraries installed in non-standard location EE s s I

e Limited to low-level stuff, incl. glibc (no Linux kernel or drivers)
o Similar to the OS layer in container images

powered by

entoo
e Only targets a supported processor family (aarch64, ppc64le, x86 64, riscv6d) k/ ;
e Levels the ground for different client operating systems (Linux distros, later also macOS?)

e Currently in pilot repository:

Software layer

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/aarché4 Compatibility layer

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/ppcédle

Filesystem layer

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/x86 64 S
0S


https://github.com/EESSI/compatibility-layer

Software [ayer https://github.com/EESS|/software-layer .
e Provides scientific software applications, libraries, and dependencies \/
e Optimized for specific CPU microarchitectures (Intel Haswell, ...) EESSI
o Separate subdirectory/tree for each (in /cvmfs/.../software/...) powered by
[0 EasvBuio
e Leverages libraries (like glibc) from compatibility layer (not from host OS)
Lmod
e Installed with EasyBuild, incl. environment module files
/
e Lmod environment modules tool is used to access installations —

i i H H Compatibility layer
Best subdirectory for host is selected automatically via archspec

Filesystem layer

host OS

95


https://github.com/EESSI/software-layer

EESS| paper (open access) doi.org/10.1002/spe.3075 '

--------- Ideal § *
175 :
¢ EESSI (Zen2 stack) i } \ ,
> | t JUSUF software stack .
e 150 t  EESSI (x86_64 generic stack) '
()]
~ O
< 5 125 b EESSI
o o
oo
AN S °
8 g 100
<
Se 757
x O
@ g o
8 50]
C
©
Z [ ]
25 ¢
0 6 ........ 1 2 3 4 5 6 7
2 2 2 2 2 2 2 2

Nodes (128 cores per node)

Paper includes proof-of-concept performance evaluation compared to system software stack,
performed at JUSUF @ JSC using GROMACS 2020.4, up to 16,384 cores (CPU-only) 96


https://doi.org/10.1002/spe.3075

Current status of EESSI

e Working proof of concept (see https://eessi.github.io/docs/pilot) w)
e Ansible playbooks, scripts, docs at https://github.com/eessi
EESSI
e CernVM-FS: Stratum 0 @ Univ. of Groningen + four Stratum 1 servers
e Software (CPU-only): Bioconductor, GROMACS, OpenFOAM, R, TensorFlow, ...
e Hardware targets: B Microsoft
e {aarché4,ppc6ile,x86 64}/generic W= Azure
e intel/{haswell, skylake avx512}, amd/{zen2,zen3}, aWs

aarch64/{graviton2,graviton3), ppcé64le/power9le

Supported by Azure and AWS: sponsored credits to develop necessary infrastructure

97


https://eessi.github.io/docs/pilot
https://github.com/eessi

Adding software to EESSI (1/2) :

\/
e Current workflow: EESSI

o  Human runs software installation script in EESSI build container (on each target CPU arch.)

o Human runs script to create tarball with added software installations + upload it to AWS S3 bucket
o  Cron script on CernVM-FS central server picks up new uploaded tarballs

o Creates PR to (private) EESSI/staging repository on GitHub

o Tarball is automatically ingested into EESSI pilot CernVM-FS repository when PR is merged

e Scripts available in https://github.com/EESS|/software-layer + https://github.com/EESS|/infrastructure

o 1install software layer.shto install EESSI software layer on top of compat layer
o build container.shto easily run software installation script in EESSI build container
o0 create tarball.shto create tarball for added installations (based on fuse-overlayfs upper dir)

o eessi-upload-to-stagingto upload into dedicated AWS S3 bucket (requires permissions)


https://github.com/EESSI/software-layer
https://github.com/EESSI/infrastructure

Adding software to EESSI (2/2) :

\/
e Problems with current workflow: EESSI
o  Still way too manual and time-consuming: human babysitting + taking action
o Doesn'’t allow (low-effort) contributions to EESSI software layer from people not familiar with workflow
o Requires access to (growing) set of target CPUs

m Different Intel/AMD CPU generations, Arm @ AWS, POWERSY, soon also RISC-V?

m In EESSI pilot v2021.12: aarch64/generic aarch64/graviton2 ppc64le/generic,
ppc64le/power9 x86 64/generic x86 64/amd/zen2 x86 64/amd/zen3
x86 64/intel/haswell, x86 64/intel/skylake avx512

o Requires permissions to upload tarball into AWS S3 bucket for ingestion (who can we trust?)

o How do we know that provided software builds are not tampered with in any way (knowingly or not)?



o
Goal: automated procedure with human oversight {3
\L/

‘ EESSI
TILT[L Rel'E‘lFramg/

B 1» 8

build nodes bl S3 bucket tarball Stratum-0

R
;g Rel'E‘lFramg/ ‘

9 bot

" o & 8.0
¢ O PR | | =
reviewer = I EESSl/staging

contributor EESSI bot
EESSI/software-layer repo

100



Towards a semi-automated workflow (1/2) :
®
o Goal: EESSI

o Allow contributors to propose additional software to include in EESSI
o ldeally via a low effort interface: pull requests to GitHub

o Automatic feedback on whether proposed integration into EESSI works

e Attention points: automation, performance, security, (minimal) human oversight, ...

e Conditions for accepting contribution:
o Software should work correctly in EESSI environment (compat layer, RPATH, long prefix, etc.)

o Tests should be included to test end user applications (with ReFrame)

o  Software should build + tests should pass on all target CPUs (ideally)



Towards a semi-automated workflow (2/2) {5
\/

Implement a bot as a GitHub App: EESSI

?

)
Y 4

i
\

0
|

e In Python 3, using Flask (web app framework) + PyGithub (talk to GitHub API)

e Event-based bot that reacts to pull requests (PRs) to EESST/software-layer repository

©)

@)

©)

Events include: opening a PR, posting a comment, adding/removing a label, ...

Tasks:

Automatically build & install software for different target CPUs (no human intervention)
Using EESSI build container, on top of compat layer
Run tests to verify that software installation works (in different environment: OS, system, etc.)

Get software installations ingested into EESSI repository (after PR is merged?)


https://docs.github.com/en/developers/apps
https://pypi.org/project/Flask
https://pypi.org/project/PyGithub
https://github.com/EESSI/software-layer

High-level overview of EESSI software bot

O = )

contributor EESSI/software-layer

eessi-2021.12.yam|

software: &
OpenFOAM: .
toolchains: fEdla Aol

foss-2020a:
versions: ['8', 'v2006']



High-level overview of EESSI software bot -

ﬂ O . \ EESSI

contributor EESSI/software-layer

# prepare job working directory for PR

# submit jobs to build software

sbatch ${pr}/scripts/${target}/build.sh

haswell-03 graviton2-07
software: NSNS |:> NSNS |:>
OpenFOAM:

. reviewer
toolchains: haswell.tgz graviton2.tgz

foss-2020a:

versions: ['8', 'v2006'] skylake-21 power9-13

power9.tgz

skylake.tgz




High-level overview of EESSI software bot

contributor EESSI/software- Iay
Wﬂ
] vF‘

< =
eessi-2021.12.yam| o

software: @ @

OpenFOAM: haswell.tgz skylake.tgz

toolchains:
foss-2020a:
versions: ['8', 'v2006']

graviton2.tgz

'

power9.tgz



High-level overview of EESSI software bot {5

0O O &/ EESSI
contributor EESSI/software—Ia N
o # submit jobs to test built software
/\Ef |"Jll sbatch ${pr}/scripts/${target}/test.sh
A
e | =
c—

vﬁ

build-system-x test-system-y




High-level overview of EESSI software bot {5
\/

(simplified view)

Q I 0 EESSI
contributor EESSI/software-Iay i | /]

%

w20
¢

openfoam-test.py —2 @
@rfm.simple_test @ @ -

class
OpenFOAMTest(rfm.RegressionTest):

haswell.tgz skylake.tgz graviton2.tgz power9.tgz



High-level overview of EESSI software bot {5
\/

g/ EESSI
s — for arch in ${archs}
. Mergeq Y
contributor EESSI/software-layer .
AN
”\q ¢ W - | eessi-upload-to-staging>

gL ${arch}.tgz S3 bucket

dO\N“\oad

j cvmfs_server ingest
Stratum-0

S{arch}.tgz

EESSI
repo




The MultiXscale EuroHPC Project Multiftscale

e FEuroHPC Centre of Excellence
o 4year project, likely start Q1 2023
e Budget of ~6M EUR (50% EU funding, 50% national funding)
o Roughly 50% of funding for EESSI-related activities
e C(ollaboration between EESSI and CECAM (total of 16 partners)
o EESSI primarily addresses technical aspects
o CECAM network provides scientific expertise
e Scientific target are multiscale simulations with 3 key use cases
o Helicopter design and certification for civil transport
o Battery applications to support the sustainable energy transition
o Ultrasound for non-invasive diagnostics and biomedical applications
e https://www.multixscale.eu

109


https://www.multixscale.eu

N DEMO

EESSI

EUROPEAN ENVIRONMENT FOR
SCIENTIFIC SOFTWARE INSTALLATIONS



(@)

Demo scenarios https://qithub.com/EESSI/eessi-demo o
e Demo 1: Using an “empty” Ubuntu 22.04 VM in AWS (Arm Graviton2) -
No CernVM-FS installed, EESSI not available yet, but only takes 2 min.
EESSI

@)

(@)

O

Requires admin rights (sudo to install extra packages)
Set up EESSI environment by sourcing init script

Running EESSI demo scripts

e Demo 2: On HPC-UGent infrastructure (RHEL 8.6, AMD Rome)

(@)

O

(@)

EESSI CernVM-FS repository readily available (by the friendly HPC-UGent sysadmins)
Leverage software installations provided by EESSI in job scripts

Anyone who has an account on the HPC-UGent infrastructure can do this!

111


https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (1/3)

e We need to: https://qgithub.com/EESSI/eessi-demo w)
o Install CernVM-FS packages

EESSI

o Install EESSI CernVM-FS configuration (cvmfs-eessi-config* package)

o  Set up minimal client configurationin /etc/cvmfs/default.local
e For production usage (especially large-scale), you should also:
o Use a squid proxy, next to a local client cache (better start-up performance)
o Set up your own Stratum-1 mirror server (protection against network disconnects)

o Also recommended to “be a good citizen” in the EESSI CernVM-FS network

112


https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (2/3)

e Commands to install CernVM-FS + EESSI configuration for CernVM-FS

e Assumption: using Ubuntu as OS (only matters for apt-get/dpkg commands)

$ cat eessi-demo/scripts/install cvmfs_eessi Ubuntu.sh

sudo
wget
sudo
sudo
sudo

wget
sudo

sudo

sudo

sudo

apt-get install lsb-release
https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest all.deb
dpkg -i cvmfs-release-latest all.deb

apt-get update

apt-get install -y cvmfs

https://github.com/EESSI/filesystem-layer/releases/download/latest/cvmfs-config-eessi latest all.deb
dpkg -1 cvmfs-config-eessi latest all.deb

bash -c "echo 'CVMFS CLIENT PROFILE="single"' > /etc/cvmfs/default.local"
bash -c "echo 'CVMFS QUOTA LIMIT=10000' >> /etc/cvmfs/default.local"

cvmfs config setup

https://qithub.com/EESSI/eessi-demo



https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (3/3)

e Once CernVM-FS + EESSI configuration is installed, you're good to go!

e Set up EESSI environment by sourcing the init script, load modules, run.

$ 1s /cvmfs/pilot.eessi-hpc.org
host injections latest versions https://qgithub.com/EESSI/eessi-demo

$ source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

ﬁé;ironment set up to use EESSI pilot software stack, have fun!

$ module avail GROMACS TensorFlow OpenFOAM Bioconductor

————— /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/aarché64/graviton2/modules/all
GROMACS/2020.1-foss-2020a-Python-3.8.2 OpenFOAM/9-foss-2021a (D)

GROMACS/2020.4-foss-2020a-Python-3.8.2 (D) R-bundle-Bioconductor/3.11-foss-2020a-R-4.0.0
OpenFOAM/v2006-foss-2020a TensorFlow/2.3.1-foss-2020a-Python-3.8.2

OpenFOAM/8-foss-2020a



https://github.com/EESSI/eessi-demo

Demo 2: On HPC-UGent infrastructure

e https://www.ugent.be/hpc/en/infrastructure

\_/
EESSI

e OS:RHEL 8.6 - Slurm

e (CPUs: mix of different generations of Intel and AMD CPUs

e Assumption: EESSI is already available to use

e HPCteam has installed and configured CernVM-FS to provide access to EESSI
e Incl. properly setting up squid proxy (cache) + local Stratum-1 (caching + reliability)
e Researchers who have an HPC account can leverage software provided by EESSI

e Just source EESSI init script, load modules, and you're ready to go!

source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

115


https://www.ugent.be/hpc/en/infrastructure

Try out EESSI yourself using Apptainer!

Only Apptainer (or Singularity) is required to run the EESSI client container
Should work on any Linux distribution, on Intel/AMD/Arm/POWER CPUs
Detailed instructions available at https://eessi.github.io/docs/pilot EESSI

$ apptainer shell --fusemount "$EESSI_ PILOT" docker://ghcr.io/eessi/client-pilot:centos?

Apptainer> ls /cvmfs/pilot.eessi-hpc.org/

2021.06 host injections latest versions

Apptainer> source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Found EESSI pilot repo @ /cvmfs/pilot.eessi-hpc.org/versions/2021.12!

archspec says x86 64/amd/zen2

Using x86 64/amd/zen2 as software subdirectory.

Using /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86 64/amd/zen2/modules/all as the
directory to be added to MODULEPATH.

Found Lmod configuration file at

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86 64/amd/zen2/.1lmod/lmodrc.lua
Initializing Lmod...

Prepending /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86 64/amd/zen2/modules/all to
SMODULEPATH. ..



https://eessi.github.io/docs/pilot

Overview of use cases enabled by EESSI

\_/
EESSI

e A uniform software stack across HPC clusters, clouds, servers, and laptops
e Can be leveraged in continuous integration (Cl) environments

e Significantly facilitates setting up infrastructure for HPC training

e Enhanced collaboration with software developers and application experts

e Enable portable workflows

Also discussed in our open-access paper, available via doi.org/10.1002/spe.3075

117


https://doi.org/10.1002/spe.3075

o
EESSI provides a uniform software stack 0

e \Wide variety of systems supported EESSI
o CPUs: x86_64 (Intel, AMD), aarch64 (Arm), ppc64le (POWER), riscv64 (soon...)
o OS: any Linux distribution, Windows via WSL, macOS should be possible too

e Main goal: same software everywhere: laptop, server, HPC, cloud, ...

o High-speed interconnects (Infiniband), GPUs, etc.

e Without compromising on software performance
o Optimized software installations for specific CPU microarchitectures + auto-detection

o Large contrast with generic binaries often used in containers

e Facilitates migrating from laptop to HPC, cloud bursting, ...

118



Leveraging EESSI in Cl environments

\_/
EESSI

e EESSI can be used in Cl environments like Jenkins, GitHub Actions, ...

e \We can provide:
o Different compilers to test your software with
o Required dependencies for your software

o Additional tools like ReFrame, ...

e Other than CernVM-FS, no software installations required

o Everything that is actually needed is pulled in on-demand by CernVM-FS

e Significantly facilitates also running Cl tests in other contexts (laptop, HPC, ...)

119



Leveraging EESSI in Cl environments

Accessing EESSI in a GitHub Actions workflow is very... easy:

See it in action in the eessi-demo repository:

\L/
jobs:

eessi: aithub.com/EESSI/eessi-demo/actions/workflows/pilot_repo_native.yml E E s s I

runs-on: ubuntu-20.04
github.com/EESSI/eessi-demo/blob/main/.github/workflows/pilot_repo _native.yml

steps:
- name: Check out repository

uses: actions/checkout@v2
- name: Mount EESSI CernVM-FS pilot repository
uses: cvmfs-contrib/github-action-cvmfs@main
with:
# name of EESSI pilot repository
cvmfs_repositories: pilot.eessi-hpc.org
(:> # EESSI configuration package (long download URL)

cvmfs config package: https://./latest/cvmfs-config-eessi latest all.deb

OE

# direct access to CernVM-FS network, no proxy
cvmfs_http proxy: DIRECT

- name: Set up EESSI environment and run tests
run: |

source /cvmfs/pilot.eessi-hpc.org/versions/2021.12/init/bash ’
20

./run_tests.sh # what the developer really cares about, just load modules for dependencies!


https://github.com/EESSI/filesystem-layer/releases/download/latest/cvmfs-config-eessi_latest_all.deb'
https://github.com/EESSI/eessi-demo/actions/workflows/pilot_repo_native.yml
https://github.com/EESSI/eessi-demo/blob/main/.github/workflows/pilot_repo_native.yml

Leveraging EESSI in Cl environments

S
ST pilot_repo_native (OpenFOAM, 2021.12)

succeeded 2 hours ago in 15m 10s
Jobs

@ pilot_repo_native (Bioconduc... Set up job

@ pilot_repo_native (Bioconduc... Check out software-layer repository 1s
pilot_repo_native (GROMACS... Mount EESSI CernVM-FS pilot repository 47s
pilot_repo_native (GROMACS... Run demo 14m 19s

pilot_repo_native (OpenFOA... » Run source /cvmfs/pilot.eessi-hpc.org/versions/2021.12/init/bash

Found EESSI pilot repo @ /cvmfs/pilot.eessi~-hpc.org/versions/2021.12!
pilot_repo_native (OpenFO... Using x86_64/intel/haswell as software subdirectory.

Using /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/intel/haswell
pilot_repo_native (TensorFlo... /modules/all as the directory to be added to MODULEPATH.

Found Lmod configuration file at /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software
pilot_repo_native (TensorFlo... /linux/x86_64/intel/haswell/.lmod/lmodrc. lua

Initializing Lmod...

Prepending /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/intel/haswell

/modules/all to $MODULEPATH...

Environment set up to use EESSI pilot software stack, have fun!

/home/runner/work/eessi-demo/eessi-demo/OpenFOAM

WORKDIR: /tmp/runner/5019

/tmp/runner/5019

/tmp/runner/5019/motorBike

generating mesh...

New entry maxGlobalCells 200000000;

ithub.com/EESSI/eessi-demo/actions/runs/3044103853/jobs/4904114694



https://github.com/EESSI/eessi-demo/actions/runs/3044103853/jobs/4904114694

Leveraging EESSI in Cl environment (short version) ‘

We also have an EESSI GitHub Action as a shorthand for this: y
\

See it in action in the github-essi-action repository:

name: ubuntu gromacs github.com/EESSI/github-action-eessi E E s s I
on: [push, pull request]

jobs : github.com/EESSI/github-action-eessi/blob/main/.github/workflows/gromacs-usage.yml

build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: eessi/github-action-eessi@main
with:
e @ eessi_stack version: '2021.06'
- name: Test EESSI
run: |
module load GROMACS
gmx --version
shell: bash
122


https://github.com/EESSI/github-action-eessi
https://github.com/EESSI/github-action-eessi/blob/main/.github/workflows/gromacs-usage.yml

everaging EESSI GitHub Action

@ Setupjob
Run actions/checkout@v2
Run eessi/github-action-eessi@main

v @ Test EESSI

¥ Run module load GROMACS
module load GROMACS
gmx --version
shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0}
env:
EESSI_SILENT: 1
BASH_ENV: /cvmfs/pilot.eessi-hpc.org/versions/2021.06/init/bash

:-) GROMACS - gmx, 2020.4-MODIFIED (-:

GROMACS is written by:
Emile Apol Rossen Apostolov Paul Bauer Herman J.C. Berendsen

Par Bjelkmar Christian Blau Viacheslav Bolnykh Kevin Boyd
Aldert van Buuren Rudi van Drunen Anton Feenstra Alan Gray
Gerrit Groenhof Anca Hamuraru Vincent Hindriksen M. Eric Irrgang
Aleksei TIupinov Christoph Junghans Joe Jordan Dimitrios Karkoulis

Peter Kasson Jiri Kraus Carsten Kutzner Per Larsson
Justin A. Lemkul Viveca Lindahl Magnus Lundborg Erik Marklund

Pascal Merz Pieter Meulenhoff Teemu Murtola Szilard Pall

Sander Pronk Roland Schulz Michael Shirts Alexey Shvetsov

Alfons Sijbers Peter Tieleman Jon Vincent Teemu Virolainen
Christian Wennberg Maarten Wolf Artem Zhmurov

and the project leaders:

ithub.com/EESSI/qithub-action-eessi/action



https://github.com/EESSI/github-action-eessi/actions/runs/3044539257/jobs/4905040409

Facilitate HPC training

\_/
EESSI

e EESSI can significantly reduce effort required to set up infrastructure

for HPC training sessions (introductory, software-specific, ...)

e Setting up a throwaway Slurm cluster in the cloud is easy via CitC or Magic Castle
e EESSI can provide (scientific) software that is required for the training

e Attendees can easily set up the same software environment later on their own

system(s) by leveraging EESSI

124



Collaboration with software developers + experts

e A central software stack by/for the community opens new doors... w)

e We can work with software developers/experts to verify the installation EESSI

O

O

O

O

O

Check how installation is configured and built

Help to verify whether software is functional for different use cases
Show us how to do extensive testing of their software

Evaluate performance of the software, enable performance monitoring

“Approved by developers” stamp for major applications included in EESSI

e Relieve software developers from burden of getting their software installed

O

Remove need to provide pre-built binary packages?

e Developers can also leverage EESSI themselves: dependencies, Cl, ...

125



EESSI enables portable workflows

\_/
EESSI

They often involve running a broad set of tools, which all need to be available

Portable workflows are significantly easier when relying on EESSI

Workflows definitions (Snakemake, ...) can be included in EESSI along with software

e Community-specific view on software provided by EESSI can be provided

126



L/
EESSI

EUROPEAN ENVIRONMENT FOR
SCIENTIFIC SOFTWARE INSTALLATIONS

Paper (open access): https://doi.org/10.1002/spe.3075

Website: https://www.eessi-hpc.org

Join our mailing list & Slack channel
https://www.eessi-hpc.org/join

Documentation: https://eessi.github.io/docs

GitHub: https://qithub.com/eessi

Twitter: @eessi hpc

YouTube channel (brand new!)

Monthly online meetings (first Thursday, 2pm CEST)



https://doi.org/10.1002/spe.3075
https://www.eessi-hpc.org
https://www.eessi-hpc.org/join
https://eessi.github.io/docs
https://github.com/eessi
https://twitter.com/eessi_hpc
https://www.youtube.com/channel/UCKLS5X7_oMWhUrAZuzSwBxQ
https://github.com/EESSI/meetings/wiki

