
27-28 April 2023, London (UK)

https://easybuild.io/eb-eessi-uk-workshop-2023-04

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop

EasyBuild + EESSI UK workshop

https://easybuild.io/eb-eessi-uk-workshop-2023-04
https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop


● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

2https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● Tutorial website: https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop

● If you need help, consider asking questions in the EasyBuild Slack

● Prepared environment for hands-on demos & exercises

Practical information

3

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop
https://easybuild.io/join-slack


● Small Rocky 8 cluster (in the cloud)

● You need to create an account!
○ Signup: https://mokey.eum23.learnhpc.eu/auth/signup
○ Accounts will only be approved for access on 26-27-28 April 2023,

so please record your username/password !
■ “Reset password” link does not work, instead raise any login problem in Slack

● Access via ssh or web browser (pick one and stick to it!)
○ Shell access: ssh eum23.learnhpc.eu

■ Use login node, or start interactive shell on workernode: srun --time 600 -c 1 
--pty /bin/bash -l

○ Via browser: https://eum23.learnhpc.eu

● System will be up until the end of the tutorial (~18:00 BST on Fri 28 April 2023)

Prepared environment

4https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-practical-info

https://mokey.eum23.learnhpc.eu/auth/signup
https://eum23.learnhpc.eu/
https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-practical-info


● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

5



● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python (2.7, 3.5+)

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’12 (version 0.5)

○ EasyBuild 1.0.0 released in Nov’12 (during SC12)

○ Worldwide community has grown around it since then!

https://easybuild.io

https://docs.easybuild.io

https://github.com/easybuilders

https://easybuild.io/join-slack

Twitter: @easy_build

What is EasyBuild?

6

https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.io/join-slack
https://twitter.com/easy_build


● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

7



● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to installation prefix)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)

8



● Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2012 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

9



Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild

10



● EasyBuild is not YABT (Yet Another Build Tool)

○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager: OpenSSL, Slurm, etc.

● EasyBuild is not a magic solution to all your (software installation) problems

○ You may still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not

11



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

12https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● It is important to briefly explain some terminology often used in EasyBuild

● Some concepts are specific to EasyBuild: easyblocks, easyconfigs, …

● Overloaded terms are clarified: modules, extensions, toolchains, …

EasyBuild terminology

13



● The EasyBuild framework is the core of EasyBuild

● Collection of Python modules, organised in packages

● Implements common functionality for building and installing software

● Support for applying patches, running commands, generating module files, ...

● Examples: easybuild.toolchains, easybuild.tools, …

● Provides eb command, but can also be leveraged as a Python library

● GitHub repository: https://github.com/easybuilders/easybuild-framework

EasyBuild terminology: framework

14

https://github.com/easybuilders/easybuild-framework


● A Python module that implements a specific software installation procedure

○ Can be viewed as a “plugin” to the EasyBuild framework

● Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages, etc.

● Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WRF, …)

● Installation procedure can be controlled via easyconfig parameters

○ Additional configure options, commands to run before/after build or install command, ...

○ Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of software

● GitHub repository: https://github.com/easybuilders/easybuild-easyblocks

● Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks )

EasyBuild terminology: easyblock

15

https://github.com/easybuilders/easybuild-easyblocks


● Text file that specifies what EasyBuild should install (in Python syntax)

● Collection of values for easyconfig parameters (key-value definitions)

● Filename typically ends in ‘.eb’

● Specific filename is expected in some contexts (when resolving dependencies)

○ Should match with values for name, version, toolchain, versionsuffix

○ <name>-<version>-<toolchain><versionsuffix>.eb

● GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

EasyBuild terminology: easyconfig file 

16

https://github.com/easybuilders/easybuild-easyconfigs


EasyBuild terminology: easystack file

17

● New concept since EasyBuild v4.3.2 (Dec’20), experimental feature

● Concise description for software stack to be installed (in YAML syntax)

● Basically specifies a set of easyconfig files (+ associated info)

● Still a work-in-progress, only basic functionality implemented currently

● More info: https://docs.easybuild.io/en/latest/Easystack-files.html

https://docs.easybuild.io/en/latest/Easystack-files.html


● Additional software that can be installed on top of other software

● Common examples: Python packages, Perl modules, R libraries, …

● Extensions is the general term we use for this type of software packages

● Can be installed in different ways:

○ As a stand-alone software packages (separate module)

○ In a bundle together with other extensions

○ As an actual extension, to provide a “batteries included” installation

EasyBuild terminology: extensions

18



● Software that is required to build/install or run other software

● Build dependencies: only required when building/installing software (not to use it)

○ Examples: CMake, pip, pkg-config, ...

● Run-time dependencies: (also) required to use the installed software

○ Examples: Python, Perl, R, ...

● Link-time dependencies: libraries that are required by software to link to

○ Examples: glibc, OpenBLAS, FFTW, ...

● Currently in EasyBuild: no distinction between link-time and run-time dependencies

EasyBuild terminology: dependencies

19



EasyBuild terminology: toolchains

20

● Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, …

● Toolchain component: a part of a toolchain (compiler component, etc.)

● Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT

● Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.

● System toolchain: use compilers (+ libraries) provided by the operating system

● Common toolchains: widely used toolchains in EasyBuild community:

○ foss: GCC + OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW

○ intel: Intel compilers + Intel MPI + Intel MKL



EasyBuild terminology: modules

21

● Very overloaded term: kernel modules, Python modules, Perl modules …

● In EasyBuild context: “module” usually refers to an environment module file

○ Shell-agnostic specification of how to “activate” a software installation

○ Expressed in Tcl or Lua syntax (scripting languages)

○ Consumed by a modules tool (Lmod, Environment Modules, …)

● Other types of modules will be qualified explicitly (Python modules, etc.)

● EasyBuild automatically generates a module file for each installation

https://lmod.readthedocs.io
https://modules.readthedocs.io


Bringing all EasyBuild terminology together

22

The EasyBuild framework leverages easyblocks to automatically build and install 
(scientific) software, potentially including additional extensions, using a particular 
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically 
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

23https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 2.7 or 3.5+

○ Only Python standard library is required for core functionality of EasyBuild

○ Using Python 3.6+ is highly recommended!

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

○ Tcl-based implementations are also supported

Installing EasyBuild: requirements

24



Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user , using virtualenv , etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild (recommended!)

○ 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories: 

easybuilders/easybuild-{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH  environment variables

25



3-step bootstrap procedure

● Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/$USER/easybuild

pip3 install --prefix $TMPDIR easybuild

# update environment to use this temporary EasyBuild installation

export PATH=$TMPDIR/bin:$PATH

export PYTHONPATH=$TMPDIR/lib/python3.9/site-packages:$PYTHONPATH

# instruct EasyBuild to use python3 command

export EB_PYTHON=python3

26

Installing EasyBuild as a module (recommended)



3-step bootstrap procedure

● Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix $HOME/easybuild

# and then clean up the temporary EasyBuild installation

rm -r $TMPDIR

● Step 3: Load EasyBuild module to use final installation

module use $HOME/easybuild/modules/all

module load EasyBuild

27

Installing EasyBuild as a module (recommended)



Verifying the EasyBuild installation

● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

28



Updating EasyBuild
● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.5.4

29



● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild  to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild

30



● Most important configuration settings:       (strongly recommended to specify the ones in bold!)

○ Modules tool + syntax (modules-tool  + module-syntax )

○ Software + modules installation path (installpath )*

○ Location of software sources “cache” (sourcepath )*

○ Parent directory for software build directories (buildpath )*

○ Location of easyconfig files archive (repositorypath )*

○ Search path for easyconfig files (robot-paths  + robot)

○ Module naming scheme (module-naming-scheme )

● Several locations* (+ others) can be controlled at once via prefix configuration setting

● Full list of EasyBuild configuration settings (~270) is available via eb --help

Primary configuration settings

31



Configuration levels
● There are 3 different configuration levels in EasyBuild:

○ Configuration files

○ Environment variables

○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:
○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

32



● EasyBuild configuration files are in standard INI format (key=value)

● EasyBuild considers multiple locations for configuration files:

○ User-level: $HOME/.config/easybuild/config.cfg  (or via $XDG_CONFIG_HOME )

○ System-level: /etc/easybuild.d/*.cfg  (or via $XDG_CONFIG_DIRS )

○ See output of eb --show-default-configfiles

● Output produced by eb --confighelp is a good starting point

● Typically for “do once and forget” static configuration (like modules tool to use, ...)

● EasyBuild configuration files and easyconfig files are very different things!

EasyBuild configuration files

33



● Very convenient way to configure EasyBuild

● There is an $EASYBUILD_* environment variable for each configuration setting
○ Use all capital letters

○ Replace every dash (-) character with an underscore (_)

○ Prefix with EASYBUILD_

○ Example: module-syntax  → $EASYBUILD_MODULE_SYNTAX

● Common approach: using a shell script or module file to (dynamically) configure EasyBuild

$EASYBUILD_* environment variables

34



Command line options for eb command

● Configuration settings specified as command line option always “win”

● Use double-dash + name of configuration setting, like --module-syntax

● Some options have a corresponding shorthand (eb --robot == eb -r)

● In some cases, only command line option really makes sense (like eb --version)

● Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

35



Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

36



$ cat $HOME/.config/easybuild/config.cfg
[config]

prefix=/apps

$ export EASYBUILD_BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
# Current EasyBuild configuration

# (C: command line argument, D: default value,

#  E: environment variable, F: configuration file)

buildpath  (E) = /tmp/example/build

containerpath  (F) = /apps/containers

installpath (C) = /tmp/example

packagepath (F) = /apps/packages

prefix     (F) = /apps

repositorypath (F) = /apps/ebfiles_repo

robot-paths (D) = /home/example/.local/easybuild/easyconfigs

sourcepath (F) = /apps/sources

Inspecting the current configuration: example

37



● Use home directory as main prefix directory

(location for installed software, downloaded sources, …)

export EASYBUILD_PREFIX=$HOME/easybuild

● Use local temporary directory for build directories (important!)

export EASYBUILD_BUILDPATH=/tmp/$USER

● Ensure prepared software stack is visible via “module avail”

module use /easybuild/modules/all

38

Minimal EasyBuild configuration for hands-on



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

39https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



Basic usage of EasyBuild

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

40https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



● There a different ways to specify to the eb command which easyconfigs  to use

○ Specific relative/absolute paths to (directory with) easyconfig files

○ Names of easyconfig files (triggers EasyBuild to search for them)

○ Easystack file to specify a whole stack of software to install (via eb --easystack )

● Easyconfig filenames only matter when missing dependencies need to be installed

○ “Robot” mechanism searches based on dependency specs + easyconfig filename

● eb --search can be used to quickly search through available easyconfig files

Specifying easyconfigs to use

41https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!

$ eb --show-ec TensorFlow-2.6.0-foss-2021a.eb
easyblock = 'PythonBundle'

name = 'TensorFlow'
version = '2.6.0'

homepage = 'https://www.tensorflow.org/'
description = "An open-source software library for Machine Intelligence"

toolchain = {'name': 'foss', 'version': '2021a'}
toolchainopts = {'pic': True}
…

Inspecting easyconfigs via eb --show-ec

42https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



To check which dependencies are required, you can use eb --dry-run (or eb -D):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

$ eb SAMtools-1.14-GCC-11.2.0.eb -D
 ...
 * [x] $CFGS/n/ncurses/ncurses-6.2-GCCcore-11.2.0.eb (module: ncurses/6.2-GCCcore-11.2.0)

 * [x] $CFGS/p/pkg-config/pkg-config-0.29.2.eb (module: pkg-config/0.29.2)

 * [x] $CFGS/o/OpenSSL/OpenSSL-1.1.eb (module: OpenSSL/1.1)

 * [x] $CFGS/c/cURL/cURL-7.78.0-GCCcore-11.2.0.eb (module: cURL/7.78.0-GCCcore-11.2.0)

 * [ ] $CFGS/s/SAMtools/SAMtools-1.14-GCC-11.2.0.eb (module: SAMtools/1.14-GCC-11.2.0)

Checking dependencies via eb --dry-run

43https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



To check which dependencies are still missing, use eb --missing  (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb PyTables-3.6.1-foss-2021b.eb -M

3 out of 69 required modules missing:

* LZO/2.10-GCCcore-11.2.0 (LZO-2.10-GCCcore-11.2.0.eb)

* Blosc/1.21.1-GCCcore-11.2.0 (Blosc-1.21.1-GCCcore-11.2.0.eb)

* PyTables/3.6.1-foss-2021b (PyTables-3.6.1-foss-2021b.eb)

Checking missing dependencies via eb --missing

44https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, all shell commands and file operations are skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures

45https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

preparing... [DRY RUN]

[prepare_step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load GCC/11.2.0

Loading modules for dependencies...

module load bzip2/1.0.8-GCCcore-11.2.0
module load zlib/1.2.11-GCCcore-11.2.0
module load XZ/5.2.5-GCCcore-11.2.0

46

Inspecting software install procedures: example

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

Defining build environment...

  ...

  export CXX='g++'

  export CXXFLAGS='-O2 -ftree-vectorize -march=native -fno-math-errno -fPIC'

  ...

configuring... [DRY RUN]

[configure_step method]

  running command "./bootstrap.sh --with-toolset=gcc 

  --prefix=/tmp/example/Boost/1.77.0-GCC-11.2.0 --without-libraries=python,mpi"

  (in /tmp/example/build/Boost/1.77.0/GCC-11.2.0/Boost-1.77.0)

47

Inspecting software install procedures: example

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



$ eb Boost-1.77.0-GCC-11.2.0.eb -x
...

[sanity_check_step method]

Sanity check paths - file ['files']

  * lib/libboost_system-mt-x64.so

  * lib/libboost_system.so

  * lib/libboost_thread-mt-x64.so

Sanity check paths - (non-empty) directory ['dirs']

  * include/boost

Sanity check commands

  (none)

...

48

Inspecting software install procedures: example

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-basic-usage/



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

49https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb SAMtools-1.14-GCC-11.2.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○  eb BCFtools-1.14-GCC-11.2.0.eb --robot

● To see more details while the installation is running, enable trace mode:

○ eb BCFtools-1.14-GCC-11.2.0.eb --robot --trace

● To reinstall software, use eb --rebuild  (or eb --force)

50https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-installing-software



● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

Step-wise installation procedure

51https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-installing-software



Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:

# inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

# check for available modules for BCFtools

module avail BCFtools

# load BCFtools module to “activate” the installation

module load BCFtools/1.14-GCC-11.2.0

52https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-installing-software



● It’s easy to “stack” software installed in different locations

● EasyBuild doesn’t care much where software is installed

● As long as the required modules are available to load, it can pick them up

● End users can easily manage a software stack on top of what’s installed centrally!

module use /easybuild/modules/all

eb --installpath $HOME/easybuild my-software.eb

Stacking software installations

53https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-installing-software



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

54https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



Troubleshooting failing installations

55

● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):

○ Missing source files

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● When EasyBuild detects that something went wrong, it produces an error

● Very often due to a shell command that produced a non-zero exit code...

● Sometimes the problem is clear directly from the error message:

== building...

== FAILED: Installation ended unsuccessfully (build directory: 

/tmp/example/example/1.0/GCC-11.2.0):

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:

/usr/bin/g++ -O2 -ftree-vectorize -march=native -std=c++14 -c -o core.o core.cpp

g++: error: unrecognized command line option '-std=c++14' (took 1 sec)

● In some cases, the error message itself does not reveal the problem...

Troubleshooting: error messages

56https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,

the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files

57https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● EasyBuild log files are well structured, and fairly easy to search through

● Example log message, showing prefix (“== ”), timestamp, source location, log level:

== 2022-05-25 13:11:19,968 run.py:222 INFO running cmd:  make -j 9

● Different steps of installation procedure are clearly marked:

== 2022-05-25 13:11:48,817 example INFO Starting sanity check step

● To find actual problem for a failing shell command, look for patterns like:
○ ERROR
○ Error 1
○ error:
○ failure
○ not found
○ No such file or directory
○ Segmentation fault

Troubleshooting: navigating log files

58https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● EasyBuild leaves the build directory in place when the installation failed

== FAILED: Installation ended unsuccessfully (build directory: 

/tmp/build/example/1.0/GCC-11.2.0): build failed ...

● Can be useful to inspect the contents of the build directory for debugging

● For example:

○ Check config.log  when configure  command failed

○ Check CMakeFiles/CMakeError.log  when cmake command failed (good luck…)

Troubleshooting: inspecting the build directory

59https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● Highly recommended to try the exercise on tutorial website!

● Try to fix the problems you encounter with the “broken” easyconfig file…

$ eb subread.eb

...

== FAILED: Installation ended unsuccessfully (build directory: 

/tmp/example/Subread/2.0.3/GCC-8.5.0): build failed (first 300 chars):

Couldn't find file subread-2.0.3-source.tar.gz anywhere, and downloading 

it didn't work either...

Paths attempted (in order): ...

Troubleshooting: hands-on exercise

60https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-troubleshooting



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

61https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...

62https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?

● When is a software-specific easyblock really required?

● Easyblocks are “implement once and forget”

● Easyconfig files leveraging a generic easyblock can become too involved (subjective)

● Reasons to consider implementing a custom easyblock:

○ 'critical' values for easyconfig parameters required to make installation succeed

○ custom (configure) options related to toolchain or included dependencies

○ interactive commands that need to be run

○ having to create or adjust specific (configuration) files

○ 'hackish' usage of a generic easyblock

○ complex or very non-standard installation procedure

63https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version , homepage , description , toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):
○ easyblock (by default derived from software name)

○ versionsuffix

○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

64https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



Generating tweaked easyconfig files

● Trivial changes to existing easyconfig files can be done automatically

● Bumping software version: eb example-1.0.eb --try-software-version 1.1

● Changing toolchain (version): eb example.eb --try-toolchain GCC,11.2.0

● Changing specific easyconfig parameters (limited): eb --try-amend ...

● Note the “try” aspect: additional changes may be required to make installation work

● EasyBuild does save the so generated easyconfig files in the easybuild subdirectory 

of the software installation directory and in the easyconfig archive.

65https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



● Small but useful feature: copy specified easyconfig file via eb --copy-ec

● Avoids the need to locate the file first via eb --search

● Typically used to create a new easyconfig using existing one as starting point

● Example:

$ eb --copy-ec SAMtools-1.14-GCC-11.2.0.eb SAMtools.eb

...

SAMtools-1.14-GCC-11.2.0.eb copied to SAMtools.eb

Copying easyconfig files

66https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



Hands-on: creating easyconfig files

67

● Step-wise example + exercise of creating an easyconfig file from scratch

● For fictitious software packages: eb-tutorial + py-eb-tutorial

● Great exercise to work through these yourself!

name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-writing-easyconfigs



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

68https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● [10:00-10:05] Welcome + Practical Info

● [10:05-10:15] What is EasyBuild?

● [10:15-10:30] EasyBuild Terminology

● [10:30-11:00] Installation and configuration of EasyBuild (hands-on)

● [11:00-11:30] Basic Usage of EasyBuild (hands-on)

● [11:30-12:00] Installing Software with EasyBuild (hands-on)

● [12:00-13:00] (lunch break)

● [14:00-15:00] Troubleshooting (hands-on)

● [13:00-14:00] Writing Easyconfigs (hands-on)

● [15:00-15:30] (coffee break)

● [15:30-16:30] Module Naming Schemes (hands-on)

● [16:30-17:00] Q&A

Agenda - day 1 (all times are BST)

69https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● Handful of supported module naming schemes (MNS), EasyBuildMNS is the default

● Flat module naming scheme (like EasyBuildMNS)

○ Clear mapping of easyconfig filename to name of generated module file

○ All modules immediately available for loading

● Hierarchical scheme typically has 3 levels

○ core level for things like compilers

○ compiler level

○ MPI level

○ Use “gateway modules” to access 

different levels

Flat vs hierarchical module naming schemes

70https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-module-naming-schemes



Pros and cons of using a flat vs hierarchical MNS

● Flat MNS
± all modules visible (can be overwhelming)
+ guaranteed unique
− long module names that can be confusing
− potential compatibility issues unless you are careful

● Hierarchical MNS
+ short/clean module names (and no visible toolchains) 
± less visible modules (need to use module spider + module avail)
± automatic swapping with Lmod when changing compiler/mpi 
+ modules that can be loaded are compatible with each other
− requires gateway modules which might have little meaning for users

71https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-module-naming-schemes



● You can also create your own module naming scheme (e.g., lower-case only)
○ Implement Python class that derives from the general ModuleNamingScheme  class

○ Best to start from one of the existing schemes

○ There are (a lot) more things to tweak with hierarchical module naming schemes

● To configure EasyBuild to use your custom module naming scheme:

export EASYBUILD_INCLUDE_MODULE_NAMING_SCHEMES=$HOME/easybuild/example_mns.py

export EASYBUILD_MODULE_NAMING_SCHEME=ExampleMNS

● Use dry-run mode to test it, e.g.,
eb SciPy-bundle-2021.10-foss-2021b.eb -D

Custom module naming schemes with EasyBuild

72https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-module-naming-schemes

https://docs.easybuild.io/en/latest/api/easybuild.tools.module_naming_scheme.mns.html#easybuild.tools.module_naming_scheme.mns.ModuleNamingScheme


Hands-on example: installing HDF5 in an HMNS

● We must avoid mixing modules from a flat and hierarchical MNS!
module unuse $MODULEPATH

● Configure our setup to reuse the existing software installations
export EASYBUILD_INSTALLPATH_SOFTWARE=/easybuild/software

export EASYBUILD_MODULE_NAMING_SCHEME=HierarchicalMNS

export EASYBUILD_INSTALLPATH_MODULES=$HOME/hmns/modules

● Re-generate all modules for HDF5 using the new scheme (42 modules)
eb HDF5-1.12.1-gompi-2021b.eb --robot --module-only

● Explore the new hierarchy
module use $HOME/hmns/modules/all/Core

73https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-module-naming-schemes



● [10:00-12:00] EasyBuild: advanced topics (incl. demos)

○ Contributing to EasyBuild

○ Customizing EasyBuild Using Hooks

○ Implementing Easyblocks

○ Submitting Installations as Slurm Jobs

○ Using EasyBuild as a Python Library

● [12:00-13:00] (lunch break)

● [13:00-17:00] Introduction to EESSI (incl. 30min coffee break + Q&A)

○ What is EESSI?

○ High-level design of EESSI

○ Current status of the project

○ Getting access to EESSI (hands-on)

○ Using EESSI (hands-on)

○ Use Cases for EESSI (hands-on)

○ The EESSI Community

Agenda - day 2 (all times are BST)

74https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop



● Documentation is read all over the world

● HPC sites, consortia, and companies

● Slack: >700 members, ~180 active members 

per week, 311k messages

● Regular online conf calls… and we even meet in person sometimes! 

The EasyBuild community

75https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community

EasyBuild User Meeting 2023 (London)

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/community


Why Contribute Back?

76https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing

● Creating PRs upstream: get reviews, suggestions from software installation experts

● Participating in the EasyBuild community: connect with HPC teams from all over the world

● Keeping in sync with the EasyBuild repository to maximally profit from upstream work:

○ New software recipes, new version of existing software

○ Bug fixes

○ Enhancements, additional functionality

○ Performance improvements

https://easybuilders.github.io/easybuild-tutorial/2022-isc22/contributing


There are several ways to contribute to EasyBuild, including:

● Providing feedback (positive or negative)

● Reporting bugs

● Joining the discussions (mailing list, Slack, conf calls)

● Sharing suggestions/ideas for enhancements & additional features

● Contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● Extending & enhancing documentation

Contributing to EasyBuild

77https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-contributing



● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also requires some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command! 

● Makes testing contributions very easy (~2,500 easyconfig pull requests per year!)

● Extensively documented:

https://docs.easybuild.io/integration-with-github

GitHub integration features

78https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-contributing

https://docs.easybuild.io/integration-with-github


metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3

79

+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-0.19.1-intel-2017b-Python-3.6.3.eb

$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn

$ git checkout develop && git pull upstream develop

$ git checkout -b scikit_learn_0191_intel_2017b

$ git add easybuild/easyconfigs/s/scikit-learn

$ git commit -m "{data}[intel/2017b] scikit-learn v0.19.1"

$ git push origin scikit_learn_0191_intel_2017b

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction

https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-contributing



EasyBuild Contributions & Contributors

80https://tutorial.easybuild.io/2023-eb-eessi-uk-workshop/easybuild-contributing

(only central easyconfigs repository)



● Hooks allow you to customize EasyBuild easily and consistently

● Set of Python functions that are automatically picked up by EasyBuild

● Can be used to ”hook” custom code into specific installation steps

● Make EasyBuild use your hooks via hooks configuration option

● Examples:
○ Inject or tweak configuration options

○ Change toolchain definitions

○ Custom checks to ensure that site policies are taken into account

● Extensively documented: https://docs.easybuild.io/en/latest/Hooks.html

Customizing EasyBuild via Hooks

81

https://docs.easybuild.io/en/latest/Hooks.html


● EUM’22 talk by Alex: Building a heterogeneous MPI stack with EasyBuild

https://easybuild.io/eum22/#eb-mpi

● contrib/hooks subdirectory in easybuild-framework GitHub repository:

https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks

Hooks: examples

82

https://easybuild.io/eum22/#eb-mpi
https://github.com/easybuilders/easybuild-framework/tree/develop/contrib/hooks


Ensure that software is installed with a specific license group:

def parse_hook(self, *args, **kwargs):

if self.name == 'Example':

    # use correct license group on Hortense

    if os.getenv('VSC_INSTITUTE_CLUSTER') == 'dodrio':

            self['group'] = 'gli_hortense_example'

Hooks: examples

83



● An easyblock may be required for more complex software installations

● This requires some Python skills, and familiarity with EasyBuild framework

● A software-specific easyblock can derived from a generic easyblock

● Focus is usually on configure/build/installs steps of installation procedure

● See also https://docs.easybuild.io/implementing-easyblocks

Implementing Easyblocks

84

https://docs.easybuild.io/implementing-easyblocks


● EasyBuild can distribute the installation of a software stack as jobs on a cluster

● Slurm is the most commonly used job backend that EasyBuild can use

● export EASYBUILD_JOB_BACKEND=Slurm

● Then use “eb … --job --robot”

● See also https://docs.easybuild.io/submitting-jobs

Submitting Installations as Slurm Jobs

85

https://docs.easybuild.io/submitting-jobs


● You can use EasyBuild as a Python library:  from easybuild import …

● Setting up the EasyBuild configuration first is required:

from easybuild.tools.options import set_up_configuration

set_up_configuration()

● You can write your own Python scripts that leverage EasyBuild!

Using EasyBuild as a Python Library

86



● Website: https://easybuild.io

● Documentation: https://docs.easybuild.io

● Tutorials: https://tutorial.easybuild.io

● Yearly EasyBuild User Meeting: https://easybuild.io/eum

● Getting help:

○ Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

○ Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

○ Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

Questions?

87https://easybuild.io/tutorial/isc22

https://easybuild.io
https://docs.easybuild.io
https://tutorial.easybuild.io
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls
https://easybuild.io/tutorial/isc21


88

Introduction to EESSI



89

EESSI in a nutshell

https://www.eessi-hpc.org

https://eessi.github.io/docs (try out the pilot setup!)

● European Environment for Scientific Software Installations (EESSI)

● Shared repository of (optimized!) scientific software installations

● Avoid duplicate work across (HPC) sites by collaborating on a shared software stack

● Uniform way of providing software to users, regardless of the system they use!

● Should work on any Linux OS (+ WSL, and possibly macOS) and system architecture

○ From laptops and personal workstations to HPC clusters and cloud

○ Support for different CPUs, interconnects, GPUs, etc.

● Focus on performance, automation, testing, collaboration

https://www.eessi-hpc.org
https://eessi.github.io/docs


● Software should be optimized for the system it will run on

● Impact on performance is often significant for scientific software 

• Example: GROMACS 2020.1
(PRACE benchmark, Test Case B)

• Metric: (simulated) ns/day,
higher is better

• Test system: dual-socket
Intel Xeon Gold 6420
(Cascade Lake, 2x18 cores)

• Performance of different 
GROMACS binaries,
on exact same hardware/OS

Optimized scientific software installations

SSE2 AVX AVX2 AVX512

70% speedup!

GROMACS built for...
90



Major goals of EESSI

91

● Avoid duplicate work (for researchers, HPC support teams, …)

○ Tools that automate software installation process

(EasyBuild, Spack) are not sufficient

○ Go beyond sharing build recipes => work towards a shared software stack

● Providing a truly uniform software stack

○ Use the (exact) same software environment everywhere

○ Without sacrificing performance for “mobility of compute”

(like with containers/conda)

● Facilitate HPC training, development of (scientific) software, …



Host operating system (Linux, macOS, WSL)   
   

   
 T

es
tin

g
Software layer

Optimized applications + dependencies

Filesystem layer
Distribution of the software stack

Compatibility layer
Levelling the ground across client OSs

Host OS 
provides
network 
& GPU 
drivers,

resource 
manager 
(Slurm), 

...

92

High-level overview of EESSI project



● Global distribution of software installations

● Centrally managed software stack

● Redundant network of “mirrors”

● Multiple levels of caching

● Same software stack everywhere:

laptops, HPC clusters, cloud VMs, …

(icons via https://w
w

w
.flaticon.com

/authors/sm
ashicons)

HPC cluster X

Cloud A

CernVM-FS
Stratum 0

CernVM-FS
Stratum 1

Filesystem layer

Squid 
reverse 
proxy

93

Squid 
forward 
proxy

https://cvmfs.readthedocs.io

93

https://github.com/EESSI/filesystem-layer

https://www.flaticon.com/authors/smashicons
https://cvmfs.readthedocs.io
https://github.com/EESSI/filesystem-layer


● Gentoo Prefix installation (in /cvmfs/.../compat/<os>/<arch>/ )

● Set of tools & libraries installed in non-standard location

● Limited to low-level stuff, incl. glibc (no Linux kernel or drivers)
○ Similar to the OS layer in container images

● Only targets a supported processor family (aarch64 , ppc64le , x86_64, riscv64)

● Levels the ground for different client operating systems (Linux distros, later also macOS?)

● Currently in pilot repository:
/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/aarch64

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/ppc64le

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/compat/linux/x86_64

Compatibility layer

Compatibility layer

Software layer

host OS

Filesystem layer

powered by

94

https://github.com/EESSI/compatibility-layer

https://github.com/EESSI/compatibility-layer


Software layer

Compatibility layer

Filesystem layer

Software layer

host OS

powered by

● Provides scientific software applications, libraries, and dependencies

● Optimized for specific CPU microarchitectures (Intel Haswell, ...)

○ Separate subdirectory/tree for each (in /cvmfs/.../software/...)

● Leverages libraries (like glibc) from compatibility layer (not from host OS)

● Installed with EasyBuild, incl. environment module files

● Lmod environment modules tool is used to access installations

● Best subdirectory for host is selected automatically via archspec

95

https://github.com/EESSI/software-layer

https://github.com/EESSI/software-layer


Paper includes proof-of-concept performance evaluation compared to system software stack,

performed at JUSUF @ JSC using GROMACS 2020.4, up to 16,384 cores (CPU-only)

EESSI paper (open access)

96

doi.org/10.1002/spe.3075

https://doi.org/10.1002/spe.3075


● Working proof of concept (see https://eessi.github.io/docs/pilot)

● Ansible playbooks, scripts, docs at https://github.com/eessi

● CernVM-FS: Stratum 0 @ Univ. of Groningen + four Stratum 1 servers 

● Software (CPU-only): Bioconductor, GROMACS, OpenFOAM, R, TensorFlow, …

● Hardware targets:

● {aarch64,ppc64le,x86_64}/generic

● intel/{haswell, skylake_avx512}, amd/{zen2,zen3}, 

aarch64/{graviton2,graviton3), ppc64le/power9le

● Supported by Azure and AWS: sponsored credits to develop necessary infrastructure

97

Current status of EESSI

https://eessi.github.io/docs/pilot
https://github.com/eessi


● Current workflow:

○ Human runs software installation script in EESSI build container (on each target CPU arch.)

○ Human runs script to create tarball with added software installations + upload it to AWS S3 bucket

○ Cron script on CernVM-FS central server picks up new uploaded tarballs

○ Creates PR to (private) EESSI/staging repository on GitHub

○ Tarball is automatically ingested into EESSI pilot CernVM-FS repository when PR is merged

● Scripts available in https://github.com/EESSI/software-layer + https://github.com/EESSI/infrastructure

○ install_software_layer.sh to install EESSI software layer on top of compat layer 

○ build_container.sh to easily run software installation script in EESSI build container

○ create_tarball.sh to create tarball for added installations (based on fuse-overlayfs upper dir)

○ eessi-upload-to-staging to upload into dedicated AWS S3 bucket (requires permissions)

Adding software to EESSI (1/2)

https://github.com/EESSI/software-layer
https://github.com/EESSI/infrastructure


● Problems with current workflow:

○ Still way too manual and time-consuming: human babysitting + taking action

○ Doesn’t allow (low-effort) contributions to EESSI software layer from people not familiar with workflow

○ Requires access to (growing) set of target CPUs

■ Different Intel/AMD CPU generations, Arm @ AWS, POWER9, soon also RISC-V?

■ In EESSI pilot v2021.12: aarch64/generic, aarch64/graviton2, ppc64le/generic, 
ppc64le/power9, x86_64/generic, x86_64/amd/zen2, x86_64/amd/zen3, 
x86_64/intel/haswell, x86_64/intel/skylake_avx512 

○ Requires permissions to upload tarball into AWS S3 bucket for ingestion (who can we trust?)

○ How do we know that provided software builds are not tampered with in any way (knowingly or not)?

Adding software to EESSI (2/2)



Goal: automated procedure with human oversight

100



● Goal:

○ Allow contributors to propose additional software to include in EESSI

○ Ideally via a low effort interface: pull requests to GitHub

○ Automatic feedback on whether proposed integration into EESSI works

● Attention points: automation, performance, security, (minimal) human oversight, …

● Conditions for accepting contribution:

○ Software should work correctly in EESSI environment (compat layer, RPATH, long prefix, etc.)

○ Tests should be included to test end user applications (with ReFrame)

○ Software should build + tests should pass on all target CPUs (ideally)

Towards a semi-automated workflow (1/2)



Implement a bot as a GitHub App:

● In Python 3, using Flask (web app framework) + PyGithub (talk to GitHub API)

● Event-based bot that reacts to pull requests (PRs) to EESSI/software-layer repository

○ Events include: opening a PR, posting a comment, adding/removing a label, …

● Tasks:

○ Automatically build & install software for different target CPUs (no human intervention)

○ Using EESSI build container, on top of compat layer

○ Run tests to verify that software installation works (in different environment: OS, system, etc.)

○ Get software installations ingested into EESSI repository (after PR is merged?)

Towards a semi-automated workflow (2/2)

https://docs.github.com/en/developers/apps
https://pypi.org/project/Flask
https://pypi.org/project/PyGithub
https://github.com/EESSI/software-layer


EESSI/software-layer

 PR

eessi-2021.12.yaml

software:
    OpenFOAM:
        toolchains:
            foss-2020a:
                versions: ['8', 'v2006']

reviewer

contributor

High-level overview of EESSI software bot



dfdf

EESSI/software-layer

 PR

eessi-2021.12.yaml

software:
    OpenFOAM:
        toolchains:
            foss-2020a:
                versions: ['8', 'v2006']

reviewer

contributor

approved review
# prepare job working directory for PR

# submit jobs to build software

sbatch ${pr}/scripts/${target}/build.sh

haswell.tgz

haswell-03

dfdf
skylake.tgz

skylake-21

dfdf
graviton2.tgz

graviton2-07

dfdf
power9.tgz

power9-13

High-level overview of EESSI software bot



EESSI/software-layer

 PR

eessi-2021.12.yaml

software:
    OpenFOAM:
        toolchains:
            foss-2020a:
                versions: ['8', 'v2006']

contributor
builds OK

haswell.tgz skylake.tgz graviton2.tgz power9.tgz

High-level overview of EESSI software bot



EESSI/software-layer

 PR

contributor

OK to test

# submit jobs to test built software

sbatch ${pr}/scripts/${target}/test.sh

dfdf

build-system-x

dfdf

test-system-y

(simplified view)

openfoam-test.py

@rfm.simple_test
class 
OpenFOAMTest(rfm.RegressionTest):

High-level overview of EESSI software bot



EESSI/software-layer

 PR

contributor
tests OK

(simplified view)

haswell.tgz skylake.tgz graviton2.tgz power9.tgz

openfoam-test.py

@rfm.simple_test
class 
OpenFOAMTest(rfm.RegressionTest):

High-level overview of EESSI software bot



EESSI/software-layer

 PR

contributor

PR merged

${arch}.tgz

Stratum-0

S3 bucket

eessi-upload-to-staging

EESSI 
repo

download

cvmfs_server ingest

${arch}.tgz

for arch in ${archs}

High-level overview of EESSI software bot



● EuroHPC Centre of Excellence
○ 4 year project, likely start Q1 2023

● Budget of ~6M EUR (50% EU funding, 50% national funding)
○ Roughly 50% of funding for EESSI-related activities

● Collaboration between EESSI and CECAM (total of 16 partners)
○ EESSI primarily addresses technical aspects
○ CECAM network provides scientific expertise

● Scientific target are multiscale simulations with 3 key use cases
○ Helicopter design and certification for civil transport
○ Battery applications to support the sustainable energy transition
○ Ultrasound for non-invasive diagnostics and biomedical applications

● https://www.multixscale.eu

The MultiXscale EuroHPC Project

109

https://www.multixscale.eu


DEMO



● Demo 1: Using an “empty” Ubuntu 22.04 VM in AWS (Arm Graviton2)

○ No CernVM-FS installed, EESSI not available yet, but only takes 2 min.

○ Requires admin rights (sudo to install extra packages)

○ Set up EESSI environment by sourcing init script

○ Running EESSI demo scripts

● Demo 2: On HPC-UGent infrastructure (RHEL 8.6, AMD Rome)

○ EESSI CernVM-FS repository readily available (by the friendly HPC-UGent sysadmins)

○ Leverage software installations provided by EESSI in job scripts

○ Anyone who has an account on the HPC-UGent infrastructure can do this!

111

Demo scenarios https://github.com/EESSI/eessi-demo

https://github.com/EESSI/eessi-demo


● We need to:

○ Install CernVM-FS packages

○ Install EESSI CernVM-FS configuration (cvmfs-eessi-config*  package)

○ Set up minimal client configuration in /etc/cvmfs/default.local 

● For production usage (especially large-scale), you should also:

○ Use a squid proxy, next to a local client cache (better start-up performance)

○ Set up your own Stratum-1 mirror server (protection against network disconnects)

○ Also recommended to “be a good citizen” in the EESSI CernVM-FS network

112

Demo 1: Ubuntu 22.04 Arm VM in AWS (1/3)

https://github.com/EESSI/eessi-demo

https://github.com/EESSI/eessi-demo


● Commands to install CernVM-FS + EESSI configuration for CernVM-FS

● Assumption: using Ubuntu as OS (only matters for apt-get/dpkg commands)

● $ cat eessi-demo/scripts/install_cvmfs_eessi_Ubuntu.sh

sudo apt-get install lsb-release
wget https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest_all.deb
sudo dpkg -i cvmfs-release-latest_all.deb
sudo apt-get update
sudo apt-get install -y cvmfs

   wget https://github.com/EESSI/filesystem-layer/releases/download/latest/cvmfs-config-eessi_latest_all.deb
sudo dpkg -i cvmfs-config-eessi_latest_all.deb

sudo bash -c "echo 'CVMFS_CLIENT_PROFILE="single"' > /etc/cvmfs/default.local"
sudo bash -c "echo 'CVMFS_QUOTA_LIMIT=10000' >> /etc/cvmfs/default.local"

sudo cvmfs_config setup

113

https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (2/3)

https://github.com/EESSI/eessi-demo


● Once CernVM-FS + EESSI configuration is installed, you’re good to go!

● Set up EESSI environment by sourcing the init script, load modules, run.

●
$ ls /cvmfs/pilot.eessi-hpc.org
host_injections latest versions

$ source /cvmfs/pilot.eessi-hpc.org/latest/init/bash
...
Environment set up to use EESSI pilot software stack, have fun!

$ module avail GROMACS TensorFlow OpenFOAM Bioconductor

–----- /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/aarch64/graviton2/modules/all -------

●       GROMACS/2020.1-foss-2020a-Python-3.8.2    OpenFOAM/9-foss-2021a                     (D)
      GROMACS/2020.4-foss-2020a-Python-3.8.2 (D) R-bundle-Bioconductor/3.11-foss-2020a-R-4.0.0
      OpenFOAM/v2006-foss-2020a                 TensorFlow/2.3.1-foss-2020a-Python-3.8.2
      OpenFOAM/8-foss-2020a

●
114

https://github.com/EESSI/eessi-demo

Demo 1: Ubuntu 22.04 Arm VM in AWS (3/3)

https://github.com/EESSI/eessi-demo


● https://www.ugent.be/hpc/en/infrastructure

● OS: RHEL 8.6 - Slurm

● CPUs: mix of different generations of Intel and AMD CPUs

● Assumption: EESSI is already available to use

● HPC team has installed and configured CernVM-FS to provide access to EESSI

● Incl. properly setting up squid proxy (cache) + local Stratum-1 (caching + reliability)

● Researchers who have an HPC account can leverage software provided by EESSI

● Just source EESSI init script, load modules, and you’re ready to go!

source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Demo 2: On HPC-UGent infrastructure

115

https://www.ugent.be/hpc/en/infrastructure


● Only Apptainer (or Singularity) is required to run the EESSI client container

● Should work on any Linux distribution, on Intel/AMD/Arm/POWER CPUs

● Detailed instructions available at https://eessi.github.io/docs/pilot

$ apptainer shell --fusemount "$EESSI_PILOT" docker://ghcr.io/eessi/client-pilot:centos7
...
Apptainer> ls /cvmfs/pilot.eessi-hpc.org/

2021.06  host_injections  latest  versions

Apptainer> source /cvmfs/pilot.eessi-hpc.org/latest/init/bash

Found EESSI pilot repo @ /cvmfs/pilot.eessi-hpc.org/versions/2021.12!

archspec says x86_64/amd/zen2

Using x86_64/amd/zen2 as software subdirectory.

Using /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/modules/all as the 

directory to be added to MODULEPATH.

Found Lmod configuration file at 

/cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/.lmod/lmodrc.lua

Initializing Lmod...

Prepending /cvmfs/pilot.eessi-hpc.org/versions/2021.12/software/linux/x86_64/amd/zen2/modules/all to 

$MODULEPATH... 116

Try out EESSI yourself using Apptainer!

https://eessi.github.io/docs/pilot


● A uniform software stack across HPC clusters, clouds, servers, and laptops

● Can be leveraged in continuous integration (CI) environments

● Significantly facilitates setting up infrastructure for HPC training

● Enhanced collaboration with software developers and application experts

● Enable portable workflows

Also discussed in our open-access paper, available via doi.org/10.1002/spe.3075

117

Overview of use cases enabled by EESSI

https://doi.org/10.1002/spe.3075


● Main goal: same software everywhere: laptop, server, HPC, cloud, …

● Wide variety of systems supported

○ CPUs: x86_64 (Intel, AMD), aarch64 (Arm), ppc64le (POWER), riscv64 (soon…)

○ OS: any Linux distribution, Windows via WSL, macOS should be possible too

○ High-speed interconnects (Infiniband), GPUs, etc.

● Without compromising on software performance

○ Optimized software installations for specific CPU microarchitectures + auto-detection

○ Large contrast with generic binaries often used in containers

● Facilitates migrating from laptop to HPC, cloud bursting, …
118

EESSI provides a uniform software stack



Leveraging EESSI in CI environments

● EESSI can be used in CI environments like Jenkins, GitHub Actions, …

● We can provide:

○ Different compilers to test your software with

○ Required dependencies for your software

○ Additional tools like ReFrame, …

● Other than CernVM-FS, no software installations required

○ Everything that is actually needed is pulled in on-demand by CernVM-FS

● Significantly facilitates also running CI tests in other contexts (laptop, HPC, …)

119



Accessing EESSI in a GitHub Actions workflow is very… easy:

jobs:
  eessi:

    runs-on: ubuntu-20.04

    steps:
    - name: Check out repository

        uses: actions/checkout@v2

    - name: Mount EESSI CernVM-FS pilot repository

        uses: cvmfs-contrib/github-action-cvmfs@main

        with:

                # name of EESSI pilot repository

              cvmfs_repositories: pilot.eessi-hpc.org

                # EESSI configuration package (long download URL) 

              cvmfs_config_package: https://…/latest/cvmfs-config-eessi_latest_all.deb

                # direct access to CernVM-FS network, no proxy

               cvmfs_http_proxy: DIRECT

    - name: Set up EESSI environment and run tests
        run: |
         source /cvmfs/pilot.eessi-hpc.org/versions/2021.12/init/bash

        ./run_tests.sh  # what the developer really cares about, just load modules for dependencies!

Leveraging EESSI in CI environments

120

See it in action in the eessi-demo repository:
github.com/EESSI/eessi-demo/actions/workflows/pilot_repo_native.yml

github.com/EESSI/eessi-demo/blob/main/.github/workflows/pilot_repo_native.yml

https://github.com/EESSI/filesystem-layer/releases/download/latest/cvmfs-config-eessi_latest_all.deb'
https://github.com/EESSI/eessi-demo/actions/workflows/pilot_repo_native.yml
https://github.com/EESSI/eessi-demo/blob/main/.github/workflows/pilot_repo_native.yml


Leveraging EESSI in CI environments

121https://github.com/EESSI/eessi-demo/actions/runs/3044103853/jobs/4904114694

https://github.com/EESSI/eessi-demo/actions/runs/3044103853/jobs/4904114694


We also have an EESSI GitHub Action as a shorthand for this:

name: ubuntu_gromacs

on: [push, pull_request]

jobs:

 build:

   runs-on: ubuntu-latest

   steps:

   - uses: actions/checkout@v2

   - uses: eessi/github-action-eessi@main

     with:

       eessi_stack_version: '2021.06'

   - name: Test EESSI

     run: |

       module load GROMACS

       gmx --version

     shell: bash

See it in action in the github-essi-action repository:
github.com/EESSI/github-action-eessi

github.com/EESSI/github-action-eessi/blob/main/.github/workflows/gromacs-usage.yml

Leveraging EESSI in CI environment (short version)

122

https://github.com/EESSI/github-action-eessi
https://github.com/EESSI/github-action-eessi/blob/main/.github/workflows/gromacs-usage.yml


Leveraging EESSI GitHub Action

123https://github.com/EESSI/github-action-eessi/actions/runs/3044539257/jobs/4905040409

https://github.com/EESSI/github-action-eessi/actions/runs/3044539257/jobs/4905040409


Facilitate HPC training

● EESSI can significantly reduce effort required to set up infrastructure

for HPC training sessions (introductory, software-specific, …)

● Setting up a throwaway Slurm cluster in the cloud is easy via CitC or Magic Castle

● EESSI can provide (scientific) software that is required for the training

● Attendees can easily set up the same software environment later on their own 

system(s) by leveraging EESSI

124



● A central software stack by/for the community opens new doors…

● We can work with software developers/experts to verify the installation

○ Check how installation is configured and built

○ Help to verify whether software is functional for different use cases

○ Show us how to do extensive testing of their software

○ Evaluate performance of the software, enable performance monitoring

○ “Approved by developers” stamp for major applications included in EESSI

● Relieve software developers from burden of getting their software installed

○ Remove need to provide pre-built binary packages?

● Developers can also leverage EESSI themselves: dependencies, CI, …

Collaboration with software developers + experts

125



EESSI enables portable workflows

126

● Portable workflows are significantly easier when relying on EESSI

● They often involve running a broad set of tools, which all need to be available

● Workflows definitions (Snakemake, …) can be included in EESSI along with software 

● Community-specific view on software provided by EESSI can be provided



Paper (open access): https://doi.org/10.1002/spe.3075

Website: https://www.eessi-hpc.org

Join our mailing list & Slack channel
https://www.eessi-hpc.org/join

Documentation: https://eessi.github.io/docs

GitHub: https://github.com/eessi

Twitter: @eessi_hpc

YouTube channel (brand new!)

Monthly online meetings (first Thursday, 2pm CEST)

https://doi.org/10.1002/spe.3075
https://www.eessi-hpc.org
https://www.eessi-hpc.org/join
https://eessi.github.io/docs
https://github.com/eessi
https://twitter.com/eessi_hpc
https://www.youtube.com/channel/UCKLS5X7_oMWhUrAZuzSwBxQ
https://github.com/EESSI/meetings/wiki

