
June 25th 2021

https://easybuild.io/tutorial/isc21

EasyBuild tutorial
ISC’21

Kenneth Hoste (HPC-UGent) - Alan O’Cais (JSC) - Bart Oldeman (Compute Canada)

https://easybuild.io/tutorial/isc21

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

2https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● Friday June 25th 2021, 12:00 - 16:00 UTC

● Tutorial website: https://easybuild.io/tutorial/isc21

● Please join the #tutorial-isc21 channel in the EasyBuild Slack to ask questions!

● Prepared environment for hands-on demos & exercises

Practical information

3https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

https://easybuild.io/tutorial/isc21
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

● Questions or problems?
Speak up in #tutorial-isc21 on EasyBuild Slack!

● Join via https://easybuild.io/join-slack

● Use threads to avoid overflowing the channel!

4

Q&A via dedicated channel in EasyBuild Slack

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

https://easybuild.io/join-slack
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

● Small polls will be posted in the #tutorial-isc21 Slack channel.

● Vote for one (or more) answers using the corresponding emoji !

5

Emoji polls in Slack

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

● Small CentOS 7 cluster (in the cloud)

● You need to create an account!
○ Signup: https://mokey.isc21.learnhpc.eu/auth/signup
○ Accounts will only be approved for access on 24/25 June 2021,

so please record your username/password !

● Access via ssh or web browser:
○ Shell access: ssh isc21.learnhpc.eu
○ Via browser: https://isc21.learnhpc.eu

● System will be up until the end of the conference (18:15 CEST, Friday 2 July 2021)

Prepared environment

6https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

https://mokey.isc21.learnhpc.eu/auth/signup
https://isc21.learnhpc.eu/
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/practical_info

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

7https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● EasyBuild is a software build and installation framework

● Strong focus on scientific software, performance, and HPC systems

● Open source (GPLv2), implemented in Python (2.7, 3.5+)

● Brief history:

○ Created in-house at HPC-UGent in 2008

○ First released publicly in Apr’11

○ EasyBuild 1.0 released in Nov’11 (during SC11)

○ Worldwide community has grown around it since then!

https://easybuild.io

https://docs.easybuild.io

https://github.com/easybuilders

https://easybuild.slack.com
(https://easybuild.io/join-slack)

Twitter: @easy_build

What is EasyBuild?

8https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuild.io
https://docs.easybuild.io
https://github.com/easybuilders
https://easybuild.slack.com
https://easybuild.io/join-slack
https://twitter.com/easy_build
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

● Tool to provide a consistent and well performing scientific software stack

● Uniform interface for installing scientific software on HPC systems

● Saves time by automating tedious, boring and repetitive tasks

● Can empower scientific researchers to self-manage their software stack

● A platform for collaboration among HPC sites worldwide

● Has become an “expert system” for installing scientific software

EasyBuild in a nutshell

9https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

● Supports fully autonomously installing (scientific) software,

including dependencies, generating environment module files, …

● No admin privileges are required (only write permission to install path)

● Highly configurable, easy to extend, support for hooks, easy customisation

● Detailed logging, fully transparent via support for “dry runs” and trace mode

● Support for using custom module naming schemes (incl. hierarchical)

Key features of EasyBuild (1/2)

10https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

● Integrates with various other tools (Lmod, Singularity, FPM, Slurm, GC3Pie, …)

● Actively developed and supported by worldwide community

● Frequent stable releases since 2011 (every 6 - 8 weeks)

● Comprehensive testing: unit tests, testing contributions, regression testing

● Various support channels (mailing list, Slack, conf calls) + yearly user meetings

Key features of EasyBuild (2/2)

11https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

Performance

● Strong preference for building software from source

● Software is optimized for the processor architecture of build host (by default)

Reproducibility

● Compiler, libraries, and required dependencies are mostly controlled by EasyBuild

● Fixed software versions for compiler, libraries, (build) dependencies, ...

Community effort

● Development is highly driven by EasyBuild community

● Lots of active contributors, integration with GitHub to facilitate contributions

Focus points in EasyBuild

12https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

● EasyBuild is not YABT (Yet Another Build Tool)

○ It does not try to replace CMake, make, pip, etc.

○ It wraps around those tools and automates installation procedures

● EasyBuild does not replace traditional Linux package managers (yum, dnf, apt, …)

○ You should still install some software via OS package manager: OpenSSL, Slurm, etc.

● EasyBuild is not a magic solution to all your (software installation) problems

○ You will still run into compiler errors (unless somebody worked around it already)

What EasyBuild is not

13https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/introduction

● It is important to briefly explain some terminology often used in EasyBuild

● Some concepts are specific to EasyBuild: easyblocks, easyconfigs, …

● Overloaded terms are clarified: modules, extensions, toolchains, …

EasyBuild terminology

14https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

● The EasyBuild framework is the core of EasyBuild

● Collection of Python modules, organised in packages

● Implements common functionality for building and installing software

● Support for applying patches, running commands, generating module files, ...

● Examples: easybuild.toolchains, easybuild.tools, …

● Provides eb command, but can also be leveraged as a Python library

● GitHub repository: https://github.com/easybuilders/easybuild-framework

EasyBuild terminology: framework

15https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://github.com/easybuilders/easybuild-framework
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

● A Python module that implements a specific software installation procedure

○ Can be viewed as a “plugin” to the EasyBuild framework

● Generic easyblocks for “standard” stuff: cmake + make + make install, Python packages, etc.

● Software-specific easyblocks for complex software (OpenFOAM, TensorFlow, WRF, …)

● Installation procedure can be controlled via easyconfig parameters

○ Additional configure options, commands to run before/after build or install command, ...

○ Generic easyblock + handful of defined easyconfig parameters is sufficient to install a lot of software

● GitHub repository: https://github.com/easybuilders/easybuild-easyblocks

● Easyblocks do not need to be part of the EasyBuild installation (see --include-easyblocks)

EasyBuild terminology: easyblock

16https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://github.com/easybuilders/easybuild-easyblocks
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

● Text file that specifies what EasyBuild should install (in Python syntax)

● Collection of values for easyconfig parameters (key-value definitions)

● Filename typically ends in ‘.eb’

● Specific filename is expected in some contexts (when resolving dependencies)

○ Should match with values for name, version, toolchain, versionsuffix

○ <name>-<version>-<toolchain><versionsuffix>.eb

● GitHub repository: https://github.com/easybuilders/easybuild-easyconfigs

EasyBuild terminology: easyconfig file

17https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://github.com/easybuilders/easybuild-easyconfigs
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

EasyBuild terminology: easystack file

18

● New concept since EasyBuild v4.3.2 (Dec’20), experimental feature

● Concise description for software stack to be installed (in YAML syntax)

● Basically specifies a set of easyconfig files (+ associated info)

● Still a work-in-progress, only basic functionality currently

● More info: https://docs.easybuild.io/en/latest/Easystack-files.html

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://docs.easybuild.io/en/latest/Easystack-files.html
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

EasyBuild terminology: extensions

19

● Additional software that can be installed on top of other software

● Common examples: Python packages, Perl modules, R libraries, …

● Extensions is the general term we use for this type of software packages

● Can be installed in different ways:

○ As a stand-alone software packages (separate module)

○ In a bundle together with other extensions

○ As an actual extension, to provide a “batteries included” installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

● Software that is required to build/install or run other software

● Build dependencies: only required when building/installing software (not to use it)

○ Examples: CMake, pip, pkg-config, ...

● Run-time dependencies: (also) required to use the installed software

○ Examples: Python, Perl, R, ...

● Link-time dependencies: libraries that are required by software to link to

○ Examples: glibc, OpenBLAS, FFTW, ...

● Currently in EasyBuild: no distinction between link-time and run-time dependencies

EasyBuild terminology: dependencies

20https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

EasyBuild terminology: toolchains

21

● Compiler toolchain: set of compilers + libraries for MPI, BLAS/LAPACK, FFT, …

● Toolchain component: a part of a toolchain (compiler component, etc.)

● Full toolchain: C/C++/Fortran compilers + libraries for MPI, BLAS/LAPACK, FFT

● Subtoolchain (partial toolchain): compiler-only, only compiler + MPI, etc.

● System toolchain: use compilers (+ libraries) provided by the operating system

● Common toolchains: widely used toolchain in EasyBuild community:

○ foss: GCC + OpenMPI + (FlexiBLAS +) OpenBLAS + FFTW

○ intel: Intel compilers + Intel MPI + Intel MKL

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

EasyBuild terminology: modules

22

● Very overloaded term: kernel modules, Python modules, Perl modules …

● In EasyBuild context: “module” usually refers to an environment module file

○ Shell-agnostic specification of how to “activate” a software installation

○ Expressed in Tcl or Lua syntax (scripting languages)

○ Consumed by a modules tool (Lmod, Environment Modules, …)

● Other types of modules will be qualified explicitly (Python modules, etc.)

● EasyBuild automatically generates a module file for each installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

Bringing all EasyBuild terminology together

23

The EasyBuild framework leverages easyblocks to automatically build and install
(scientific) software, potentially including additional extensions, using a particular
compiler toolchain, as specified in easyconfig files which each define a set of
easyconfig parameters.

EasyBuild ensures that the specified (build) dependencies are in place, and automatically
generates a set of (environment) modules that facilitate access to the installed software.

An easystack file can be used to specify a collection of software to install with EasyBuild.

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/terminology

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

24https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● Linux as operating system (CentOS, RHEL, Ubuntu, Debian, SLES, …)

○ EasyBuild also works on macOS, but support is very basic

● Python 2.7 or 3.5+

○ Only Python standard library is required for core functionality of EasyBuild

○ Using Python 3 is highly recommended!

● An environment modules tool (module command)

○ Default is Lua-based Lmod implementation, highly recommended!

○ Tcl-based implementations are also supported

Installing EasyBuild: requirements

25https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

Installing EasyBuild: different options

● Installing EasyBuild using a standard Python installation tool

○ pip install easybuild

○ … or a variant thereof (pip3 install --user , using virtualenv , etc.)

○ May require additional commands, for example to update environment

● Installing EasyBuild as a module, with EasyBuild (recommended!)

○ 3-step “bootstrap” procedure, via temporary EasyBuild installation using pip

● Development setup

○ Clone GitHub repositories:

easybuilders/easybuild-{framework,easyblocks,easyconfigs}

○ Update $PATH and $PYTHONPATH environment variables

26https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

3-step bootstrap procedure

● Step 1: Use pip to obtain a temporary installation of EasyBuild

export TMPDIR=/tmp/$USER/easybuild

pip3 install --prefix $TMPDIR easybuild

update environment to use this temporary EasyBuild installation

export PATH=$TMPDIR/bin:$PATH

export PYTHONPATH=$TMPDIR/lib/python3.6/site-packages:$PYTHONPATH

instruct EasyBuild to use python3 command

export EB_PYTHON=python3

27

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

3-step bootstrap procedure

● Step 2: Use EasyBuild to install EasyBuild (as a module) in home directory

eb --install-latest-eb-release --prefix $HOME/easybuild

and then clean up the temporary EasyBuild installation

rm -r $TMPDIR

● Step 3: Load EasyBuild module to use final installation

module use $HOME/easybuild/modules/all

module load EasyBuild

28

Installing EasyBuild as a module (recommended)

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

Verifying the EasyBuild installation

● Check EasyBuild version:

eb --version

● Show help output (incl. long list of supported configuration settings)

eb --help

● Show the current (default) EasyBuild configuration:

eb --show-config

● Show system information:

eb --show-system-info

29https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

Updating EasyBuild
● Updating EasyBuild (in-place) that was installed with pip:

pip install --upgrade easybuild

(+ additional options like --user, or using pip3, depending on your setup)

● Use current EasyBuild to install latest EasyBuild release as a module:

eb --install-latest-eb-release

○ This is not an in-place update, but a new EasyBuild installation!

○ You need to load (or swap to) the corresponding module afterwards:

module load EasyBuild/4.4.0

30https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installation

● EasyBuild should work fine out-of-the-box if you are using Lmod as modules tool

● … but it will (ab)use $HOME/.local/easybuild to install software into, etc.

● It is strongly recommended to configure EasyBuild properly!

● Main questions you should ask yourself:

○ Where should EasyBuild install software (incl. module files)?

○ Where should auto-downloaded sources be stored?

○ Which filesystem is best suited for software build directories (I/O-intensive)?

Configuring EasyBuild

31https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

● Most important configuration settings: (strongly recommended to specify the ones in bold!)

○ Modules tool + syntax (modules-tool + module-syntax)

○ Software + modules installation path (installpath)*

○ Location of software sources “cache” (sourcepath)*

○ Parent directory for software build directories (buildpath)*

○ Location of easyconfig files archive (repositorypath)*

○ Search path for easyconfig files (robot-paths + robot)

○ Module naming scheme (module-naming-scheme)

● Several locations* (+ others) can be controlled at once via prefix configuration setting

● Full list of EasyBuild configuration settings (~250) is available via eb --help

Primary configuration settings

32https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

Configuration levels
● There are 3 different configuration levels in EasyBuild:

○ Configuration files
○ Environment variables
○ Command line options to the eb command

● Each configuration setting can be specified via each “level” (no exceptions!)

● Hierarchical configuration:
○ Configuration files override default settings

○ Environment variables override configuration files

○ eb command line options override environment variables

33https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

● EasyBuild configuration files are in standard INI format (key=value)

● EasyBuild considers multiple locations for configuration files:

○ User-level: $HOME/.config/easybuild/config.cfg (or via $XDG_CONFIG_HOME)

○ System-level: /etc/easybuild.d/*.cfg (or via $XDG_CONFIG_DIRS)

○ See output of eb --show-default-configfiles

● Output produced by eb --confighelp is a good starting point

● Typically for “do once and forget” static configuration (like modules tool to use, ...)

● EasyBuild configuration files and easyconfig files are very different things!

EasyBuild configuration files

34https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

● Very convenient way to configure EasyBuild

● There is an $EASYBUILD_* environment variable for each configuration setting
○ Use all capital letters

○ Replace every dash (-) character with an underscore (_)

○ Prefix with EASYBUILD_

○ Example: module-syntax → $EASYBUILD_MODULE_SYNTAX

● Common approach: using a shell script or module file to (dynamically) configure EasyBuild

$EASYBUILD_* environment variables

35https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

Command line options for eb command

● Configuration settings specified as command line option always “win”

● Use double-dash + name of configuration setting, like --module-syntax

● Some options have a corresponding shorthand (eb --robot == eb -r)

● In some cases, only command line option really makes sense (like eb --version)

● Typically used to control configuration settings for current EasyBuild session;

for example: eb --installpath /tmp/$USER

36https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

Inspecting the current configuration

● It can be difficult to remember how EasyBuild was configured

● Output produced by eb --show-config is useful to remind you

● Shows configuration settings that are different from default

● Always shows a couple of key configuration settings

● Also shows on which level each configuration setting was specified

● Full current configuration: eb --show-full-config

37https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

$ cat $HOME/.config/easybuild/config.cfg
[config]

prefix=/apps

$ export EASYBUILD_BUILDPATH=/tmp/$USER/build

$ eb --installpath=/tmp/$USER --show-config
Current EasyBuild configuration

(C: command line argument, D: default value,

E: environment variable, F: configuration file)

buildpath (E) = /tmp/example/build

containerpath (F) = /apps/containers

installpath (C) = /tmp/example

packagepath (F) = /apps/packages

prefix (F) = /apps

repositorypath (F) = /apps/ebfiles_repo

robot-paths (D) = /home/example/.local/easybuild/easyconfigs

sourcepath (F) = /apps/sources

Inspecting the current configuration: example

38https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

● Use home directory as main prefix directory

(location for installed software, downloaded sources, …)

export EASYBUILD_PREFIX=$HOME/easybuild

● Use local temporary directory for build directories (important!)

export EASYBUILD_BUILDPATH=/tmp/$USER

● Ensure prepared software stack is visible via “module avail”

module use /easybuild/modules/all

39

Minimal EasyBuild configuration for hands-on

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/configuration

Basic usage of EasyBuild

● Use eb command to run EasyBuild

● Software to install is usually specified via name(s) of easyconfig file(s), or easystack file

● --robot (-r) option is required to also install missing dependencies (and toolchain)

● Typical workflow:

○ Find or create easyconfig files to install desired software

○ Inspect easyconfigs, check missing dependencies + planned installation procedure

○ Double check current EasyBuild configuration

○ Instruct EasyBuild to install software (while you enjoy a coffee… or two)

40https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

● There a different ways to specify to the eb command which easyconfigs to use

○ Specific relative/absolute paths to (directory with) easyconfig files

○ Names of easyconfig files (triggers EasyBuild to search for them)

○ Easystack file to specify a whole stack of software to install (via eb --easystack)

● Easyconfig filenames only matter when missing dependencies need to be installed

○ “Robot” mechanism searches based on dependency specs + easyconfig filename

● eb --search can be used to quickly search through available easyconfig files

Specifying easyconfigs to use

41https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

● To see the contents of an easyconfig file, you can use eb --show-ec

● No need to know where it is located, EasyBuild will do that for you!

$ eb --show-ec TensorFlow-2.4.1-foss-2020b.eb

easyblock = 'PythonBundle'

name = 'TensorFlow'
version = '2.4.1'

homepage = 'https://www.tensorflow.org/'
description = "An open-source software library for Machine Intelligence"

toolchain = {'name': 'foss', 'version': '2020b'}
toolchainopts = {'pic': True}
…

Inspecting easyconfigs via eb --show-ec

42https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

To check which dependencies are required, you can use eb --dry-run (or eb -D):

● Provides overview of all dependencies (both installed and missing)

● Including compiler toolchain and build dependencies

$ eb SAMtools-1.11-GCC-10.2.0.eb -D
 ...
 * [] $CFGS/x/XZ/XZ-5.2.5-GCCcore-10.2.0.eb (module: XZ/5.2.5-GCCcore-10.2.0)

 * [] $CFGS/c/cURL/cURL-7.72.0-GCCcore-10.2.0.eb (module: cURL/7.72.0-GCCcore-10.2.0)

 * [x] $CFGS/g/GCC/GCC-10.2.0.eb (module: GCC/10.2.0)

 * [x] $CFGS/n/ncurses/ncurses-6.2-GCCcore-10.2.0.eb (module: ncurses/6.2-GCCcore-10.2.0)

 * [] $CFGS/s/SAMtools/SAMtools-1.11-GCC-10.2.0.eb (module: SAMtools/1.11-GCC-10.2.0)

Checking dependencies via eb --dry-run

43https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

To check which dependencies are stil missing, use eb --missing (or eb -M):

● Takes into account available modules, only shows what is still missing

$ eb h5py-3.1.0-foss-2020b.eb -M

2 out of 61 required modules missing:

* pkg-config/0.29.2-GCCcore-10.2.0 (pkg-config-0.29.2-GCCcore-10.2.0.eb)

* h5py/3.1.0-foss-2020b (h5py-3.1.0-foss-2020b.eb)

Checking missing dependencies via eb --missing

44https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

● EasyBuild can quickly unveil how exactly it would install an easyconfig file

● Via eb --extended-dry-run (or eb -x)

● Produces detailed output in a matter of seconds

● Software is not actually installed, all shell commands and file operations are skipped!

● Some guesses and assumptions are made, so it may not be 100% accurate…

● Any errors produced by the easyblock are reported as being ignored

● Very useful to evaluate changes to an easyconfig file or easyblock!

Inspecting software install procedures

45https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

$ eb Boost-1.74.0-GCC-10.2.0.eb -x
...

preparing... [DRY RUN]

[prepare_step method]
Defining build environment, based on toolchain (options) and specified dependencies...

Loading toolchain module...

module load GCC/10.2.0

Loading modules for dependencies...

module load bzip2/1.0.8-GCCcore-10.2.0
module load zlib/1.2.11-GCCcore-10.2.0
module load XZ/5.2.5-GCCcore-10.2.0

46

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

$ eb Boost-1.74.0-GCC-10.2.0.eb -x
...

Defining build environment...

 ...

 export CXX='mpicxx'

 export CXXFLAGS='-O2 -ftree-vectorize -march=native -fno-math-errno -fPIC'

 ...

configuring... [DRY RUN]

[configure_step method]

 running command "./bootstrap.sh --with-toolset=gcc

 --prefix=/tmp/example/Boost/1.74.0/GCC-10.2.0/obj --without-libraries=python,mpi"

 (in /tmp/example/build/Boost/1.74.0/GCC-10.2.0/Boost-1.74.0)

47

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

$ eb Boost-1.74.0-GCC-10.2.0.eb -x
...

[sanity_check_step method]

Sanity check paths - file ['files']

 * lib/libboost_system.so

 * lib/libboost_thread-mt-x64.so

Sanity check paths - (non-empty) directory ['dirs']

 * include/boost

Sanity check commands

 (none)

...

48

Inspecting software install procedures: example

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/basic_usage

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

49https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

Installing software with EasyBuild

● To install software with EasyBuild, just run the eb command:

○ eb SAMtools-1.11-GCC-10.2.0.eb

● If any dependencies are still missing, you will need to also use --robot:

○ eb BCFtools-1.11-GCC-10.2.0.eb --robot

● To see more details while the installation is running, enable trace mode:

○ eb BCFtools-1.11-GCC-10.2.0.eb --robot --trace

● To reinstall software, use eb --rebuild (or eb --force)

50https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

● EasyBuild framework defines step-wise installation procedure, leaves some unimplemented

● Easyblock completes the implementation, override or extends installation steps where needed

Step-wise installation procedure

51https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

Using software installed with EasyBuild

To use the software you installed with EasyBuild, load the corresponding module:

inform modules tool about modules installed with EasyBuild

module use $HOME/easybuild/modules/all

check for available modules for BCFtools

module avail BCFtools

load BCFtools module to “activate” the installation

module load BCFtools/1.11-GCC-10.2.0

52https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

● It’s easy to “stack” software installed in different locations

● EasyBuild doesn’t care much where software is installed

● As long as the required modules are available to load, it can pick them up

● End users can easily manage a software stack on top of what’s installed centrally!

module use /easybuild/modules/all

eb --installpath $HOME/easybuild my-software.eb

Stacking software installations

53https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/installing_software

Troubleshooting failing installations

54

● Sometimes stuff still goes wrong…

● Being able to troubleshoot a failing installation is a useful/necessary skill

● Problems that occur include (but are not limited to):

○ Missing source files

○ Missing dependencies (perhaps overlooked required dependencies)

○ Failing shell commands (non-zero exit status)

○ Running out of memory or storage space

○ Compiler errors (or crashes)

● EasyBuild keeps a thorough log for each installation which is very helpful

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● When EasyBuild detects that something went wrong, it produces an error

● Very often due to a shell command that produced a non-zero exit code...

● Sometimes the problem is clear directly from the error message:

== building...

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/example/example/1.0/GCC-10.2.0):

build failed (first 300 chars): cmd "make" exited with exit code 2 and output:

/usr/bin/g++ -O2 -ftree-vectorize -march=native -std=c++14 -c -o core.o core.cpp

g++: error: unrecognized command line option '-std=c++14' (took 1 sec)

● In some cases, the error message itself does not reveal the problem...

Troubleshooting: error messages

55https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● EasyBuild keeps track of the installation in a detailed log file

● During the installation, it is stored in a temporary directory:
$ eb example.eb

== Temporary log file in case of crash /tmp/eb-r503td0j/easybuild-17flov9v.log

...

● Includes executed shell commands and output, build environment, etc.

● More detailed log file when debug mode is enabled (debug configuration setting)

● There is a log file per EasyBuild session, and one per performed installation

● When an installation completes successfully,
the log file is copied to a subdirectory of the software installation directory

Troubleshooting: log files

56https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● EasyBuild log files are well structured, and fairly easy to search through

● Example log message, showing prefix (“== ”), timestamp, source location, log level:

== 2021-06-25 13:11:19,968 run.py:222 INFO running cmd: make -j 9

● Different steps of installation procedure are clearly marked:

== 2021-06-25 13:11:48,817 example INFO Starting sanity check step

● To find actual problem for a failing shell command, look for patterns like:
○ ERROR
○ Error 1
○ error:
○ failure
○ not found
○ No such file or directory
○ Segmentation fault

Troubleshooting: navigating log files

57https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● EasyBuild leaves the build directory in place when the installation failed

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/build/example/1.0/GCC-10.2.0): build failed ...

● Can be useful to inspect the contents of the build directory for debugging

● For example:

○ Check config.log when configure command failed

○ Check CMakeFiles/CMakeError.log when cmake command failed (good luck…)

Troubleshooting: inspecting the build directory

58https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● Highly recommended to try the exercise on tutorial website!

● Try to fix the problems you encounter with the “broken” easyconfig file…

$ eb subread.eb

...

== FAILED: Installation ended unsuccessfully (build directory:

/tmp/example/Subread/2.0.1/GCC-8.5.0): build failed (first 300 chars):

Couldn't find file subread-2.0.1-source.tar.gz anywhere, and downloading

it didn't work either...

Paths attempted (in order): ...

Troubleshooting: hands-on exercise

59https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/troubleshooting

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

60https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

61https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● Handful of supported module naming schemes (MNS), EasyBuildMNS is the default

● Flat module naming scheme (like EasyBuildMNS)

○ Clear mapping of easyconfig filename to name of generated module file

○ All modules immediately available for loading

● Hierarchical scheme typically has 3 levels

○ core level for things like compilers

○ compiler level

○ MPI level

○ Use “gateway modules” to access different levels

Flat vs hierarchical module naming schemes

62https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

Pros and cons of using a flat vs hierarchical MNS

● Flat MNS
± all modules visible (can be overwhelming)
+ guaranteed unique
− long module names that can be confusing
− potential compatibility issues unless you are careful

● Hierarchical MNS
+ short/clean module names (and no visible toolchains)
± less visible modules (need to use module spider + module avail)
± automatic swapping with Lmod when changing compiler/mpi
+ modules that can be loaded are compatible with each other
− requires gateway modules which might have little meaning for users

63https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

● You can also create your own module naming scheme (e.g., lower-case only)
○ Implement Python class that derives from the general ModuleNamingScheme class

○ Best to start from one of the existing schemes

○ There are (a lot) more things to tweak with a hierarchical module naming schemes

● To configure EasyBuild to use your custom module naming scheme:

export EASYBUILD_INCLUDE_MODULE_NAMING_SCHEMES=$HOME/easybuild/example_mns.py

export EASYBUILD_MODULE_NAMING_SCHEME=ExampleMNS

● Use dry-run mode to test it, e.g.,
eb SciPy-bundle-2020.11-foss-2020b-Python-2.7.18.eb -D

Custom module naming schemes with EasyBuild

64https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

https://docs.easybuild.io/en/latest/api/easybuild.tools.module_naming_scheme.mns.html#easybuild.tools.module_naming_scheme.mns.ModuleNamingScheme
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

Hands-on example: installing HDF5 in an HMNS

● We must avoid mixing modules from a flat and hierarchical MNS!
module unuse $MODULEPATH

● Configure our setup to reuse the existing software installations
export EASYBUILD_INSTALLPATH_SOFTWARE=/easybuild/software

export EASYBUILD_MODULE_NAMING_SCHEME=HierarchicalMNS

export EASYBUILD_INSTALLPATH_MODULES=$HOME/hmns/modules

● Re-generate all modules for HDF5 using the new scheme (41 modules)
eb HDF5-1.10.7-gompi-2020b.eb --robot --module-only

● Explore the new hierarchy
module use $HOME/hmns/modules/all/Core

65https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/module_naming_schemes

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

66https://easybuild.io/tutorial/isc21

Adding support for additional software

● Every installation performed by EasyBuild requires an easyconfig file

● Easyconfig files can be:

○ Included with EasyBuild itself (or obtained elsewhere)

○ Derived from an existing easyconfig (manually or automatic)

○ Created from scratch

● Most easyconfigs leverage a generic easyblock

● Sometimes using a custom software-specific easyblock makes sense...

67https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

Easyblocks vs easyconfigs
● When can you get away with using an easyconfig leveraging a generic easyblock?

● When is a software-specific easyblock really required?

● Easyblocks are “implement once and forget”

● Easyconfig files leveraging a generic easyblock can become too involved (subjective)

● Reasons to consider implementing a custom easyblock:

○ 'critical' values for easyconfig parameters required to make installation succeed

○ interactive commands that need to be run

○ custom (configure) options related to toolchain or included dependencies

○ having to create or adjust specific (configuration) files

○ 'hackish' usage of a generic easyblock

○ complex or very non-standard installation procedure

68https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

Writing easyconfig files

● Collection of easyconfig parameter definitions (Python syntax),

collectively specify what to install

● Some easyconfig parameters are mandatory, and must always be defined:

name, version , homepage , description , toolchain

● Commonly used easyconfig parameters (but strictly speaking not required):
○ easyblock (by default derived from software name)

○ source_urls, sources, patches, checksums

○ dependencies, builddependencies

○ preconfigopts, configopts, prebuildopts, buildopts, preinstallopts, installopts

○ sanity_check_paths, sanity_check_commands

69https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

Generating tweaked easyconfig files

● Trivial changes to existing easyconfig files can be done automatically

● Bumping software version: eb example-1.0.eb --try-software-version 1.1

● Changing toolchain (version): eb example.eb --try-toolchain GCC,9.4.0

● Changing specific easyconfig parameters (limited): eb --try-amend ...

● Note the “try” aspect: additional changes may be required to make installation work

70https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

● Small but useful feature: copy specified easyconfig file via eb --copy-ec

● Avoids the need to locate the file first via eb --search

● Typically used to create a new easyconfig using existing one as starting point

● Example:

$ eb --copy-ec SAMtools-1.11-GCC-10.2.0.eb SAMtools.eb

...

SAMtools-1.10-GCC-10.2.0.eb copied to SAMtools.eb

Copying easyconfig files

71https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

Hands-on: creating easyconfig files

72https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

● Step-wise example + exercise of creating an easyconfig file from scratch

● For a fictive software packages: eb-tutorial + py-eb-tutorial

● Great exercise to work through these yourself!

name = 'eb-tutorial'

version = '1.0.1'

homepage = 'https://easybuilders.github.io/easybuild-tutorial'

description = "EasyBuild tutorial example"

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/adding_support_additional_software

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

73https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

EasyBuild at Jülich Supercomputing Centre

74

by Alan O’Cais

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

Jülich Supercomputing Centre

75

● JSC is a German supercomputing centre since 1987

○ About 200 experts for all aspects of supercomputing and simulation
sciences

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

Jülich Supercomputing Centre

76

● JSC is a German supercomputing centre since 1987

○ About 200 experts for all aspects of supercomputing and simulation
sciences

● Currently 3 primary systems:

○ JUWELS - 73 Petaflops, #7 in Top500 (modular supercomputing)

○ JURECA-DC - 3.54 (CPU) + 14.98 (GPU) + 5 (KNL) Petaflops

○ JUSUF - AMD, V100 GPU. Interactive workflows and community services

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

EasyBuild at JSC

77

● Used for production software stack at JSC since 2014

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

EasyBuild at JSC

78

● Used for production software stack at JSC since 2014

● Geared towards average user experience

○ Hide lots of indirect software

○ Lots of toolchains => Module hierarchy

○ Renaming some modules, Lmod tweaks

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

EasyBuild at JSC

79

● Used for production software stack at JSC since 2014

● Geared towards average user experience

○ Hide lots of indirect software

○ Lots of toolchains => Module hierarchy

○ Renaming some modules, Lmod tweaks

● Custom MNS, toolchains, easyconfigs, easyblocks

○ Maintenance and contribution issue

○ Working hard to minimise this

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

Upgrading and retiring software

80

● Provide latest software to new projects by default

○ Stages concept

○ Updates once per year

○ Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

Upgrading and retiring software

81

● Provide latest software to new projects by default

○ Stages concept

○ Updates once per year

○ Encourages users to adopt latest software & dependencies
(performance, bug fixes,...)

● Give indirect access to "retired" software

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

82

● Very powerful alternative to customisations

○ Much more automated and flexible

○ Easier to maintain (particularly for easyconfigs)

Leveraging hooks for users & maintainers

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

83

● Very powerful alternative to customisations

○ Much more automated and flexible

○ Easier to maintain (particularly for easyconfigs)

● Hooks to enable user space installations

○ Guide people on how to do this “properly”

○ Installation hierarchy: system group user

Leveraging hooks for users & maintainers

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/jsc

● by Bart Oldeman

EasyBuild at Compute Canada

84https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Compute Canada : the people

85

All research
disciplines
supported

Free access for any
researcher at a
Canadian institution

● 4 regional consortia
● 35 member institutions
● ～200 technical staff
● ～15,000 user accounts

○ 20% growth per year

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

5 major national systems
 ～15 legacy systems
270K cores, 2500 GPUs,
70 PB disk, 180 PB tape

System Type Network Production

Arbutus Cloud 10 GbE 2016 H2

Cedar General OPA 2017 H1

Graham General EDR IB 2017 H1

Niagara Large MPI EDR IB 2018 H1

Béluga General EDR IB 2019 H1

86

Compute Canada : the hardware

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Users should be presented with an interface that is as consistent and easy to
use as possible across all sites. It should also offer optimal performance.

● Accessible on every site, reliably and performantly: need a distribution mechanism

○ CernVM-FS : CERN Virtual Machine File System

● Independent of the OS (Ubuntu, CentOS, Fedora, etc.)

○ Gentoo Prefix (used to be Nix)

● Automated, tracked, reproducible installation (humans are not so consistent)

○ EasyBuild

● Needs a module interface that scales well

○ Lmod with a hierarchical structure

87

Goal

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

(caching proxies)

88

CernVM-FS content delivery

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Software: design overview

Compatibility: Nix Gentoo Prefix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.
module gentoo/2020 =>
$EPREFIX=/cvmfs/soft.computecanada.ca/gentoo/2020, $EBROOTGENTOO=$EPREFIX/usr

Easybuild-generated modules around Nix profiles (GONE):
GCC, Eclipse, Qt+Perl+Python no longer
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/[a-z]*

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all
dependencies of OpenMPI). In Gentoo layer, but can be overridden using PATH &
LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command):
always local. Some legally restricted software too (VASP)

Easybuild layer: modules for Intel, NVHPC, OpenMPI, CUDA, MKL, high-level
applications. Multiple architectures (sse3, avx, avx2, avx512)
/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/ 20172020

89https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

• Two major new clusters
with
Skylake CPUs

• Built new modules with
AVX512 for most
packages

• High deduplication

• Further details90

stratum 0

Type Modules
AI 5
Bioinformatics 239
Chemistry 63
Data 19
Geo/Earth 23
Mathematics 82
MPI libraries 7
Physics 48
Various tools 176
Visualisation 28
Misc 38

AVX512

AVX512

Available software
800+ scientific
applications

6,000+ permutations of
version/arch/toolchain

600GB

Béluga

Cedar & Graham

Python 3.8

90https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Compute Canada Software Stack

https://indico.cern.ch/event/608592/contributions/2858287/
https://docs.computecanada.ca/wiki/Available_software
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada
https://easybuilders.github.io/easybuild

• Compatibility layer => filtering of a lot of dependencies (M4, cmake, etc.)

• Toolchains based combinations of
• Intel/GCC, OpenMPI, MKL, Cuda

• => gomkl(c)/ iomkl(c) toolchains

• => We are (ab)using the --try-toolchain, --try-software-version, --try-update-deps

• Custom module naming scheme:

• Hierarchical, lower case

• No versionsuffix at all

• Toolchains are hidden

• No $LD_LIBRARY_PATH, instead RPATH using wrapper for linker (ld).

91https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Design choices / EasyBuild features

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

• Injecting custom configuration options for OpenMPI

• Injecting footer code in compiler and MPI modules to support

installation in user’s home directories

• Splitting the installation of Intel into redistributable and

non-redistributable parts

• Stripping down Python modules (dropping extensions)

92https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Hooks

https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

• Installing Python wrappers and side packages (PyQt5 with Qt5,

OpenCV-python with OpenCV, etc.) whenever possible

• Using multi_deps so that modules are compatible with all versions of Python

• Not installing most Python packages as modules, but by providing

Python wheels to users they can install using pip in virtual environments

• Not supporting Anaconda

93https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

Handling Python

https://docs.computecanada.ca/wiki/Anaconda/en
https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

You can use this too!

Mounting our software stack:

https://docs.computecanada.ca/wiki/Accessing_CVMFS

94https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

https://docs.computecanada.ca/wiki/Accessing_CVMFS
https://easybuilders.github.io/easybuild
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/computecanada

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

95https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

● Documentation read all over the world

● HPC sites, consortia, and companies

● Slack: >450 members, ~100 active members per week, 226K messages

● Regular online conf calls...and we even meet in person sometimes!

The EasyBuild community

96https://easybuilders.github.io/easybuild-tutorial/2021-isc21/community

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/community

There are several ways to contribute to EasyBuild, including:

● providing feedback

● reporting bugs

● joining the discussions (mailing list, Slack, conf calls)

● sharing suggestions/ideas for enhancements & additional features

● contributing easyconfigs, enhancing easyblocks,

adding support for new software, implementing additional features, ...

● extending & enhancing documentation

Contributing to EasyBuild

97https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

● EasyBuild has strong integration with GitHub, which facilitates contributions

● Some additional Python packages required for this: GitPython, keyring

● Also required some additional configuration, incl. providing a GitHub token

● Enables creating, updating, reviewing pull requests using eb command!

● Makes testing contributions very easy (~2,000 easyconfig pull requests per year!)

● Extensively documented:

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html

GitHub integration features

98https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

https://docs.easybuild.io/en/latest/Integration_with_GitHub.html
https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

metadata is automatically
derived from easyconfig

saves a lot of time!

Opening a pull request in 1, 2, 3

99https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

+ log into GitHub to actually open the pull request (clickety, clickety...)

$ mv sklearn.eb scikit-learn-0.19.1-intel-2017b-Python-3.6.3.eb

$ mv scikit-learn*.eb easybuild/easyconfigs/s/scikit-learn

$ git checkout develop && git pull upstream develop

$ git checkout -b scikit_learn_0191_intel_2017b

$ git add easybuild/easyconfigs/s/scikit-learn

$ git commit -m "{data}[intel/2017b] scikit-learn v0.19.1"

$ git push origin scikit_learn_0191_intel_2017b

eb --new-pr sklearn.eb

one single eb command

no git commands

no GitHub interaction

https://easybuilders.github.io/easybuild-tutorial/2021-isc21/contributing

● [12:00-12:10] Practical information w.r.t. prepared environment for hands-on examples

● [12:10-12:30] Introduction to EasyBuild: scope & terminology

● [12:30-13:00] Installing & configuring EasyBuild + basic usage

● [13:00-13:45] Installing software with EasyBuild + troubleshooting

● [13:45-14:15] (coffee break)

● [14:15-14:45] Module naming schemes (incl. hierarchical)

● [14:45-15:10] Adding support for additional software

● [15:10-15:30] Use of EasyBuild in large scale production systems at JSC and Compute Canada

● [15:30-15:45] The EasyBuild community + contributing to EasyBuild

● [15:45-16:00] Q&A + closing remarks (incl. quick comparison with other tools)

Agenda (all times are UTC)

100https://easybuild.io/tutorial/isc21

https://easybuild.io/tutorial/isc21

Topics we didn’t cover...

101

https://docs.easybuild.io - https://easybuild.io/tutorial

● Implementing easyblocks

● Using RPATH linking

● Using EasyBuild as a library

● Implementing hooks to customize EasyBuild

● Submitting installations as jobs on a cluster

● Integration with the Cray Programming Environment

● Building Docker/Singularity container images with EasyBuild (experimental)

https://docs.easybuild.io
https://easybuild.io/tutorial

● EasyBuild: GPLv2 license - Spack: MIT/Apache 2.0 license

● no stable releases yet for Spack (< 1.0), EasyBuild is stable since 2012

● roughly on par w.r.t. amount of supported software (but differences w.r.t. which software)

● targeted to different use cases: HPC support teams (EasyBuild) vs developers (Spack)

● fixed dependency/toolchain versions in EasyBuild vs flexible CLI in Spack

● both support running on top of Python 2.7 and 3.5+

● macOS support in EasyBuild is limited (no toolchains/testing for macOS)

● both projects are backed by an active & supportive community!

● For a more detailed (but somewhat outdated) comparison, see
https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

vs

102

https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists

https://www.eessi-hpc.org https://eessi.github.io/docs

● European Environment for Scientific Software Installations (EESSI)

● Collaboration between different European partners in HPC community

● Goal: building a common scientific software stack,

for HPC systems & beyond (personal workstations, cloud instances, …)

● Heavily inspired by Compute Canada software stack

● Focus on performance, automation, testing, collaboration, ...

Just one more thing…

103

https://www.eessi-hpc.org
https://eessi.github.io/docs

104

Software layer
applications + dependencies

Filesystem layer
distribution of the software stack

Compatibility layer
levelling the ground across client OSs

host operating system (any Linux distribution)

Host OS
provides
network
& GPU
drivers,

resource
manager
(Slurm),

...

High-level overview of the EESSI project
https://www.eessi-hpc.org

https://eessi.github.io/docs

https://www.eessi-hpc.org
https://eessi.github.io/docs

● Website: https://easybuild.io

● Documentation: https://docs.easybuild.io

● Tutorials: https://easybuild.io/tutorial

● Yearly EasyBuild User Meeting: https://easybuild.io/eum

● Getting help:

○ Mailing list: https://lists.ugent.be/wws/subscribe/easybuild

○ Slack: https://easybuild.slack.com - https://easybuild.io/join-slack

○ Bi-weekly conference calls: https://github.com/easybuilders/easybuild/wiki/Conference-calls

Questions?

105https://easybuild.io/tutorial/isc21

https://easybuild.io
https://docs.easybuild.io
https://easybuild.io/tutorial
https://easybuild.io/eum
https://lists.ugent.be/wws/subscribe/easybuild
https://easybuild.slack.com
https://easybuild.io/join-slack
https://github.com/easybuilders/easybuild/wiki/Conference-calls
https://easybuild.io/tutorial/isc21

